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ABSTRACT

This paper describes two new techniques for the joint
estimation of source location and propagation speed
using measured time difference of arrival (TDOA) for
a sensor array. Previous methods for source location
either assumed the array consisted of widely separated
subarrays, or used an iterative procedure that required
a good initial estimate. The first method directly es-
timates the source location and propagation speed by
converting the solution of a system of nonlinear equa-
tions to an overdetermined system of linear equations
with two supplemental variables. The second method
provides improved estimates by using the solution of
the first method as initial condition for further iter-
ation. The Cramér-Rao Bound (CRB) on the joint
estimation is derived, and simulations show the new
methods compare favorably to the bound.

Keywords: source localization, propagation speed esti-
mation, seismic remote sensing, joint estimation

1. INTRODUCTION AND PROBLEM
FORMULATION

Consider finding the location of a source with a NV pas-
sive sensors. In this situation, all that can be found
by the sensors is the time difference of arrival (TDOA)
between sensors. It is desirable to find the location of
the source using the knowledge of the sensor locations
and the measured TDOAs. This is a common problem
that has application to seismic remote sensing, battle-
field atmospheric acoustics, and underwater acoustic
sensing. This can also be shown to be equivalent to
determining the location of a single sensor receiving
synchronized signals from remote transmitters |3|, as
in the Global Positioning System (GPS).

Because of the broad applicability of this problem,
many researchers have addressed the problem in detail
over the last 30 years. However, in most cases it has
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been assumed that speed of propagation is known. This
is quite reasonable for RF applications, and perhaps
for acoustic environments if the temperature and wind
speed is known. In some cases, such as seismic remote
sensing, this is an unrealistic assumption.

The issue of estimating source position with un-
known propagation has been addressed in the past (it is
hinted at in |5]). There an iterative approach is used.
Since the problem is not convex, a good initial esti-
mate is required for convergence. In this paper a direct
solution to the problem is proposed.

Consider a single source received by N passive sen-
sors. Then ||x, — x;|| = ct;, where x, is a vector of
the known Cartesian coordinates of the source, x; is
a vector of the known Cartesian coordinates of sensor
i, t; is the time of arrival at sensor i, c is the speed
of propagation, and | - || is the Euclidean norm (i.e.
distance).

Only the TDOA can be measured, leading to the
equations

s — %] — [Ixs — X1|| = e(t; — t1), i =2,..., N, (1)

where sensor 1 has been chosen as the reference sensor
(without loss of generality).

If ¢ is known, this forms a nonlinear (and noncon-
vex) set of equations with four unknowns: xs and ¢;.
If more than four sensors are available, the problem is
overdetermined. If ¢ is also unknown, the problem is
underdetermined for four or fewer sensors, and overde-
termined for more than five sensors.

This very general problem formulation includes many
special cases some of which are of great practical inter-
est. 'These include arrays constrained to a line or a
plane, near field or far field cases, more sensors than
the number of unknown parameters, as well as the key
feature of this paper, which is known versus unknown
speed of propagation.

Consider the special case where the source and all
the sensors are on a line. If the source is inside the
array, we can determine the location with two or more
sensors and known speed or three (or more) sensors
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Figure 1: Sensor geometry and source positions for the
experiments. The sensors are located at the circles and
the source positions at the x’s.

with unknown speed. On the other hand, if the source
is outside the array the source range is profoundly un-
observable, while the speed of propagation can be esti-
mated from as few as two sensors.

Next, consider the same linear array with the source
not constrained on the line. For known velocity and
source in the far field, we can estimate the bearing
with two or more sensors, while in the near field case
three or more sensors are required to obtain an estimate
of source range and bearing. With unknown velocity
the far field bearing is not observable, while for the
near field case range and bearing are technically ob-
servable and practical application is usually limited to
cases near broadside.

The methods described in this paper are applica-
ble to cases where the source is not constrained to the
array subspace, but the example is a scenario where
the array dimension is equal to the dimension of source
location uncertainty. This case permits accurate joint
estimation of velocity and source location.

2. CRAMER-RAO BOUNDS

This section extends the results of [1] to the case where
the propagation speed is unknown. Let an object be
located at position x,, at a distance of r, from the
origin in the direction given by the unit vector b, (x, =
rsbs). Define the distance from the source to the i-th
Sensor as

D; = ||xs — x4]|-

Define the unit vector from the source to sensor i as

The range difference between sensors ¢ and 1 and

the vector of range differences are defined by

dli = Dl —DZ and d = [d12, .. .,leJT.

The time delay from the source to sensor is given by
7; = D;/c, where ¢ is the propagation speed. The time
delay vectors are given by t = (1/c)d. Denote the esti-
mated time delays as t¢; to form the vector t°. If t° is
estimated using a Maximum Likelihood (ML) estima-
tor, it can be modeled as the sum of t and a zero-mean
Gaussian distributed random variable, with its covari-
ance given by the inverse of the Fisher information ma-
trix.

For unbiased estimators with small measurement
errors, the variance of the estimators is bounded be-
low by the Cramér-Rao bound (CRB). For estimating
parameter ® drawn from a real Gaussian density with
mean £ (©) and covariance 3, then

var(©) > J-1 = (Y m -1 2
where J is the Fisher information matrix. For source
localization with unknown speed of propagation,

?

O = |xI' ¢ and p(®) = t(x,,¢) = %d(xs).

Define the differencing matrix Z = |1 — I], where
1 is a column vector of ones and I is and (n — 1) x
(n — 1) identity matrix. Then t = (1/¢)ZD, with D =
[Dy,...,Dn|7T, s0

O 2izD oiZD 1 1
= |=£ £ =-ZB --D
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where B = |by,...,by|7, because
20y = l” 7

Thus, the variance bound of the joint estimator is given
by

J =2 { B

_1prT } z's;'z| B -iD |)7

The Fisher information matrix may also be used to
find estimator bounds on position, bearing, and speed
of propagation individually. Defining the projection
matrices by

T
X:; and PL =1-P,

S

P, =

Xs

the following bounds can be derived

T
N P, 1| Px
var(rg) > { 0 } J { 0 },
T
Pis Jfl Pis ,
0 0
0

var(é) > { o rJl { o } .

var(b) > |



3. DIRECT SOLUTION

By introducing two supplemental variables, the solu-
tion to (1) can obtained from an overdetermined sys-
tem of linear equations. This does not give the Maxi-
mum Liklihood (ML) estimate (which can only be ob-
tained by an iterative approach) but the equations’
least-squares solution yields an excellent approxima-
tion for seven or more sensors in a three-dimensional
scenario (six or more sensors in a two dimensional sce-
nario).

Using vector notation, let x; = (z,y, 2) and x; =
(x4, i, 2¢). Without loss of generality, we choose i = 1
as the reference sensor for the differential time delays.

Now define the translated and normalized position
location vector variable and the two new supplemental
variables by

I; Xs — X1

X = [I1:I2:I3JT:M7
S
1

2c||xs — x|
c

(2)

Lyq

z5 _
2|xs — x4

Thus, as described in |4], (1) can be written as a
linear set of equations Ax = b, where

—(xo—x1) |xa—xf]?  —(t2—t1)?
A— ,
—(xy —x1) lxy—xq]|2 —(tny —11)?
3)
x=|xT zy,25)T, and b= [ty —ty,... .ty —tq]7.

We note in the three-dimensional problem, the first
column on the r.h.s. of (3) is a sub-matrix of dimension
(N —1) x 3 and thus A is a (N — 1) x 5 matrix, x is
a5 x 1 vector, and b is a (N — 1) x 1 vector. In the
two-dimensional problem, the first column on the r.h.s.
of (3) is a sub-matrix of dimension (N —1) x2 and thus
Aisa (N —1) x4 matrix, x is a 4 x 1 vector, and b is
an (N — 1) x 1 vector.

If {x., z4, &5} are the least-squares solution of Ax =
b, then the desired source location and the velocity are

given by
N X, s
Xs = ==X, == (4)
224 z

If the source and sensors are known to be in two-
dimensional space, then all the above results are valid
except the minimum number of sensors can be reduced
by one.

The method used to derive (4) can also be used to
derive a method that estimates source location when
the speed of propagation is known. This requires the in-
troduction of only a single supplemental variable. Then
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Figure 2: Craméer-Rao bound on range, azimuth angle
of arrival, and propagation speed. Range is in m, angle
in degrees, and propagation speed in m/s.

the source localizaiton estimate can be derived by solv-
ing a set of linear equations. This method has the ad-
vantage over the algorithm in |2| of not requiring the
solution of a quadratic equation.

4. FOUR STEP METHOD

Although the above method produces a good initial es-
timate of the source position and speed of propagation
when nothing about them is known a priori, the es-
timate of propagation speed is not particularly good.
The direct solution can be used as an initial estimate
for an iterative method. However, since existing itera-
tive methods require a good initial estimate of speed of
propagation, they may not converge. A new iterative
approach is found based on the assumption that source
location estimate is better than the initial speed esti-
mate. Ignoring the initial speed estimate and treating
the source location estimates as if they were correct,
the least-squares estimate of ¢ is then given by

told(x,)
_. 5
toTto ( )

e =
This suggest the following iterative method may be

used to jointly estimate source position and speed of
propagation given no a priori knowledge of either:

1. Find %, using (4).
2. Find ¢ using (5).

3. Use any method to estimate source location for
known speed of propagation, using c.

4. Repeat steps 2-4 as many times as desired.
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Figure 3: RMS error using direct method. Range is in
m, azimuth angle in degrees, and propagation speed in
m/s.

5. SIMULATIONS

The performance of the proposed methods is compared
to the CRB using computer simulations. Seven sensors
are randomly distributed in three dimensions (the X
and Y coordinates are shown in Figure 1; the altitudes
are small compared to X and Y). The coordinate sys-
tem is chosen such that the array centroid is at the
origin. The range and bearing are defined with respect
to the centroid. The performance is investigated at 200
points along a path that passes near the array, as shown
in Figure 1. The true speed of propagation is 343 m/s.

The CRB can be determined once the time delay
estimate variance is specified. It is assumed for this
experiments that each sensor’s error is indendent and
identically distributed. Thus, & = ¢2I, where o2 is the
variance of the time delay estimation errors. In these
simulations, the time delay estimates are assumed to be
uniformly distribted on |—A, A]. Three values of A are
simulated, 0.005, 0.05, and 0.1 m. The CRBs on range,
azimuth angle, and propogation speed estimation for
this geometry are shown in Figure 2. The standard
deviation, not the variance, of the bounds is shown in
the plots.

Monte Carlo simulations were performed using the
two methods described in this paper. At each source
location, 100 trials were performed, and the RMS er-
rors on range, azimuth angle, and propagation speed
were computed. The results using the direct method
are shown in Figure 3. For small errors, the method
approaches the CRB, but it diverges significantly for
large errors. The direct method can provide an ex-
cellent starting point for the Four Step Method. The
RMS errors using five iterations is shown in Figure 4.
In general, five iterations is quite sufficient, while excel-
lent performance with only two iterations is commonly
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Figure 4: RMS error using direct method followed it-
erations with known speed. Range is in m, azimuth
angle in degrees, and propagation speed in m/s.

encountered. The known speed solution was performed
using the known speed analogous to the unknown speed
direct method. By comparing Figure 2-4, we note the
results of the Four Step method approach those of the
CRB even for larger errors.
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