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ABSTRACT

This paper presents a novel method for calculating the Hybrid
Cramer-Rao lower bound (HCRLB) when the statistical model for
the data has a Markovian nature. The method applies to both the
non-linear/non-Gaussian as well as linear/Gaussian model. The
approach solves the required expectation over unknown random
parameters by several one-dimensional integrals computed recur-
sively, thus simplifying a computationally-intensive multi- dimen-
sional integration. The method is applied to the problem of refrac-
tivity estimation using radar clutter from the sea surface, where
the backscatter cross section is assumed to be a Markov process in
range. The HCRLB is evaluated and compared to the performance
of the corresponding maximum a-posteriori estimator. Simulation
results indicate that the HCRLB provides a tight lower bound in
this application.

1. INTRODUCTION

Bayesian bounds are used for evaluating the performance limi-
tations in cases where the unknown parameters are random with
known prior distribution. A major difficulty in calculating such
bounds is computing the required expectation over the Fisher In-
formation Matrix (FIM) with respect to the unknown random pa-
rameters. Such an expectation involves a multi-dimensional in-
tegration over these parameters. In cases where the expectation
cannot be performed analytically, numerical or Monte-Carlo inte-
gration methods may be applied. However, in the presence of a
large number of unknown parameters, such a solution is not vi-
able because of the large number of computations required. In the
presence of prior statistical information on some but not all the pa-
rameters, the hybrid form of Cramer-Rao lower bound (HCRLB)
has previously been proposed [5]. The HCRLB is a variation of the
Bayesian CRLB [10], but also requires a similar expectation over
the random parameters. In [5] this problem is handled by assum-
ing that the FIM corresponding to the measurements only (i.e. J1)
is constant with respect to the random parameters involved in the
multi-dimensional integral. In fact, under this assumption, no ex-
pectation over the random parameters is required, and derivation
of the bound becomes straight-forward. However, in most cases
such an approximation cannot be justified.

Cramer-Rao bounds for Markov processes have been proposed
assuming linear and Gaussian processes [4] where derivation of the
bound can be performed analytically. In this paper, a novel method
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for calculating the Hybrid CRLB for non-Gaussian and/or non-
linear cases is proposed. The method exploits the Markov prop-
erty of the unknown random variables, and involves replacing the
multi-dimensional integration with several one-dimensional ones,
thereby significantly reducing computation required to calculate
the bound.

2. THE HYBRID CRLB

Let g be a non-random vector and y, s be vector valued ran-
dom variables with conditional probability density function (pdf)

fy.s18(¥,88) = fys,g(Y|s, 8)fsig(s|g). The vector y denotes
the measurement vector of N elements: y 2 lyi, -+, yN]T, and s

is an unknown random vector of N+1 elements: s 2 [50,++,8n]"
describing a Markov process. The elements of the measurement
vector y, given the unknown parameters, are assumed to be in-
dependent. It is also assumed that the kth measurement depends
on s and g only. Under these assumptions, the joint pdf of the
measurement vector, y, and the random parameters, s given the
non-random parameters, g, can be expressed as:

fy,5|g(Y7 S|g) = fscls(st?'g)
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The goal here is to derive the hybrid forms of CRLB on the es-

timation error of the random and non-random parameters & =
[ST gT]T, using the measurements y and the a-priori statistical
information on s.

Let © denote any unbiased estimator of ®. Then, the HCRLB
on the estimation errors of the vector @ is [10]

cov(®) > (B [J1(@)] + J2)7' ©)

where J{ (@) is the FIM of ® using the measurements y, and it is
given by

T
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where the derivative of a scalar with respect to a vector @ =
T ou 2 [8u ... Ou :

[61,---,0c]", is defined as 55 = [W’ , 6€L:|' The matrix

J2 stands for the FIM of the vector s based on its prior statistical
information.

In many papers concerning applications of the Bayesian or
Hybrid CRLB, the prior distribution of the unknown random vec-
tor parameters has been assumed to be Gaussian. In this case, the



elements of the matrix J» are simply the covariance matrix of the
corresponding random vector. It can be shown that if the prior dis-
tribution of the random parameters is uniform, the elements of the
matrix J2 are equal to zero.

For calculation of the bound, the matrix J; is required, and it
is derived as follows. The matrix J; (@) can be partitioned as

Jss | Isg ]

I | Jes

J1(®) = “

By substituting the expression for fy|s (¥|s,g), and using the
conditional independence between the elements of y, the subma-
trices in (4) can be expressed as

[Jsslsj = UsiUs;(1 — 655) + Uss 055 &)
N
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In the next section, a recursive method for performing the expec-
tations in expressions in (8)-(12) is presented.

3. THE RECURSIVE INTEGRATION METHOD

In this section, the Markov property of the random unknown pa-
rameters is used in order to obtain a simple procedure for com-
puting the expectations in (8)-(12), thus solving the required N-
dimensional integration by a series of N one-dimensional integrals.

Note that each one of these matrices Jss, Jsg and Jgg can be

expressed as linear combinations of terms of the form ngo Vkij (%),

where for example, the 7jth element of the matrix Jss is given by
I1i—o Vi’ (sk), where

- Ust for k=1dorj, i #j
Vil (sk) = Ussk for k=i=3j . (13)
1 otherwise

Similarly, the matrices Jsg and Jgg can also be expressed by a

linear combination of the terms of the form ngo Vi(sk). Per-
forming the expectation over J1 (@), thus involves computing of

expectations over terms of the form H;:;o Vi(sk). In what fol-

lows, a fast method for calculating Es {ngo Vi () } is derived.
Using the Markov property of s, the expectated value of
H;:;o Vi (s1) after having integrated over s,, is

Es {H;:;o Vk(sk)} =f31 ...fsN ]._.[;cv:2 (14)
(Fouton_1.a(skl5k—1,8)Vi(sk)) h1(s1)ds1 - - dsn

where h1(s1) is defined as

Ba(sr) 2 Visr) / Va(50) for o, (51150) fou (50)ds0 - (15)

So

Similarly, by performing the integrals over s1,- -+, sny—1 in (14)

one obtains a recursive method for computating of Eg {H ;;V=o Vi (k) }

by writing:

Es {H Vk(sk)} =/ hN(sN)dsN , (16)
k=0 N

where

A
hm(sm) = Vm(sm) fsm_l hm—l(sm—l) (17)
fsm|5m_1,g(sm|sm—17g)dsm—ly m= 27 e 7N )
and hq(s1) is given by (15).
The above recursive method can further be simplified by not-

ing that if
Vk(sk) =1 for k=07"'7q7 (18)

then

hi(sk) = fop1(5kl8),
ha+1(8q+1) = Vat1(8g+1) fs 1 118(89+1]8)- (19)

for k=0,---,gq,

Therefore, no integration is required for computing

hi(s1), -+, hgt1(8q41). For a stationary sequence, f;, g(sx|g)
is independent of k, and it may be known or computed. Therefore
under the condition (18), if the density functions { f;, |g(s&|8)}1_,
are known, then only N — ¢ integrations are required for calculat-
ing hgy2,- -+, hy and the integration in (16). For instance, for the
ijth element of the matrix Jss, (13) implies that the condition (18)
is satisfied by setting ¢ = min(é,j) — 1. Thus, for calculating
the jth element of Jss, (N — min(¢, ) + 1) integrals needs to be
computed.

Let () denote the number of operations required for calculat-
ing one integral, and K be the size of the unknown deterministic
vector, g. Then, the number of operations for calculating each ele-
ment in B, (J1) is Q¥ . By comparison, since J; is a symmetric
matrix of size N + K + 1, the total number of required operations
using a brute-force method would be WQN 1

The number of operations required for calculating the expec-
tation over J; with respect to s is derived in [8]. For N > K >
1, the number of required operations using the conventional ver-

Lo Lo . 2
sus the recursive integration is approximately NTQN *1 versus

NTS (K? 4+ 5K +2)Q, respectively. This comparison demonstrates
that the proposed algorithm significantly reduces the number of
required operations for calculating the bound.

The matrix J2 can also be computed using the proposed recur-
sive method by a similar approach.



4. APPLICATION: THE HCRLB ON REFRACTIVITY
FROM CLUTTER ESTIMATION

In this section, the proposed method is used for calculating the
HCRLB for the problem of refractivity estimation using clutter
from sea surface. The refractivity profile in coastal regions to a
large extent determines the performance of shipboard radar and
communications systems. If the atmospheric conditions, particu-
larly the water vapor spatial distribution, were known, numerical
propagation models could be used for such purposes as predict-
ing detection ranges, correcting altitude estimates, and estimating
surface backscatter strength. The effect of the variability of atmo-
spheric refractivity on propagation estimates using real data pro-
files has been investigated in [6]. In [3], a MAP approach for esti-
mating refractivity from clutter (RFC) is proposed when both the
refractivity profile and range-dependent backscatter cross-section
(BSCS) are unknown. The BSCS as a function of range is consid-
ered in [3] to be a Markov process.

The radar clutter measurement, sampled at range bins {x k}{j:l
in radar “slant” range, is given by [3]:

where L(zy;g) is the two-way propagation loss which depends
on an unknown refractivity profile parameter vector, g. The clut-
ter return, a = [a(z1),- - -,a(zn)]”, is a complex random vec-

tor whose elements have variances o2(zy) 2 E (|a($k)|2) for
k=1,---, N. The additive noise components n(x1),- - -, n{en~),
are assumed to be i.i.d., complex Gaussian random variables with
variance 03 and zero-mean. The elements of the clutter return
vector a, given the BSCS’s [ag(xl), N (:L‘N)] , are i.i.d, with
approximately zero-mean complex Gaussian distribution. The un-
known variance of a(xy) is the BSCS of the sea surface at the
kth range bin and it depends on the sea surface roughness, inci-
dent grazing angle and frequency of the illuminating radar. Let

sy, denote the BSCS at the kth range bin s 2 o2(xy). The
unknown BSCS is modeled here as a first order Markov random
sequence with conditional transition pdf’s f,, |, _, (sx|sx—1) and
prior fs,(so). The vector of BSCS’s, s, is independent of the un-
known deterministic vector parameter, g. The pdf of sz |sg—1 and
$o are assumed to be uniformly distributed:

sk|sk_1 NU[Sk_l —d7 Sk—1 +d]7

and s, ~ U [-D, D], where d and D are positive. The objective
in this application is to estimate the refractivity profile vector pa-
rameter, g, and the nuisance parameters, s = [s,, -+, sn]7 , given

. . A
N samples of the clutter intensity, y = [y1,- - -, yn]" -
The above assumptions satisfy the conditions of the problem
stated in section 2. The transition density functions

{fSk l$k—1 (5k|5k—1)};sv=1

and the pdf f,,(s,) are assumed to be known. According to the
model stated above, the measurements, (y1,--,yn), given the
unknown parameters are independent, zero-mean (Gaussian ran-
dom variables with variance:

oh = L*(zk;g)sk + 05, k=1,--+,N. @1

For the HCRLB from (2), the FIM’s J; and J2 are required.
It can be shown that for a uniformly distributed random variable,

2z, the FIM corresponding to the priors is zero. Therefore the diag-
onal of the matrix J» is zero, and further J» = O for this problem.
This does not necessarily mean that the prior information is non-
informative however. In particular, although J» = 0, the prior
information reduces the bound by performing the integration of
J1(s) over the random parameters, s, in (2). The matrix J; can be
calculated using Eqgs. (5)-(7). In [8] the blocks of the matrix J
are calculated. The matrix Jss is found to be diagonal with

|L(z:,8)|*
(silL(zs, )2 +07)2’

[Jss]ii = i=1,"',N7 (22)

the rows of Jsg are given by

si|L(zi, g)|*| L{z:, 8) |2

,i=1
(si| Lz, 8)|* + 07)?

[JSS]i = [ 7N7 (23)

and the matrix Jgg is

o= (L=, 8) %) [ L(zi, 8) |2
Fsel =D G Lng) P+ o?)?

(24)
i=1

where | L(z:, 8)|g . The first row and column of J1,
corresponding to s, are zero, and since also Jo = 0, the hybrid
FIM (Es(J1) + J2) is not invertible. This implies that s, can-
not be jointly estimated with the other parameters (s1,--,sn)
and g. Therefore the corresponding row and column of J are
excluded from the FIM. The corresponding estimator estimates
(s1," -, sn) using both the prior statistics and the data, while the
estimate of s, is achieved according to its prior statistics only.

As an illustration of the HCRLB, a tri-linear profile was used
for a numerical experiment and is depicted in Fig. 1, where its
base height is assumed to be the unknown non-random. The two-
way propagation loss, assuming a base height of g, = 30 m, is
illustrated in Fig. 2. The propagation loss is calculated using the
Radio Physical Optics (RPO) code [2]. The BSCS is assumed to
be a Markov sequence where 20log o1 is uniformly distributed

on -10 and +10dB, and 20 log (M

o(@K—1)
between -3dB and 3dB for k = 1,.--, N. The BSCS is assumed
to be constant over 2 km intervals and the clutter intensity, |yy|*
is available every 50 m. The clutter-to-noise ratio (CNR) is defined

A mi c90)[2 . .
asCNR = w where the minimum is taken over the

2 & 0|L(z;,8)|°
og

) is uniformly distributed

>

range extent of the dwell.

The HCRLB and maximum a-poeteriori (MAP) estimator for
RFC have been computed for the scenario described above. The
performance of the MAP estimator is evaluated as a function of
CNR using Monte-Carlo simulations and the HCRLB. Fig. 3 il-
lustrates the estimator performance, based on 100 independent re-
alizations for the case where s is an unknown Markov sequence
as described above versus the HCRLB. The HCRLB is calculated
using the recursive method presented in this paper. This figure
shows that the estimator results are in agreement with the bound.
Note that above a threshold CNR, the refractivity profile can be
estimated with a root mean-square error of less than 0.5 m.

5. CONCLUSIONS

In this paper a novel method for calculating the hybrid CRLB for
non-linear/non-Gaussian Markov models has been presented. The



Figure 2: The two-way propagation loss, assuming base height of

30m

Figure 3: RMS base height error versus CNR for base height of 30

m
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Figure 1: The tri-linear refractivity profile
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method replaces the required expectation over the unknown ran-
dom parameters, which involves a multi-dimensional integration,
with recursively computed one-dimensional integral. The method
is applied to the problem of refractivity estimation using radar
clutter from the sea surface, where the BSCS is assumed to be
a Markov process in range. The HCRLB results show the bound is
tight with respect to the corresponding MAP estimator.
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