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ABSTRACT 

Many algorithms for blind source separation have been in- 
troduced in the past few years, most of which assume sta- 
tistically stationary sources. In many applications, such as 
separation of speech or fading communications signals, the 
sources are nonstationary. We present a new adaptive al- 
gorithm for blind source separation of nonstationary signals 

which relies only on the nonstationary nature of the sources 
to achieve separation. The algorithm is an efficient, on- 
line, stochastic gradient update based on minimizing the av- 
erage squared cross-output-channel-correlations along with 
deviation from unity average energy in each output chan- 
nel. Advantages of this algorithm over existing methods in- 
clude increased computational efficiency, a simple on-line, 
adaptive implementation requiring only multiplications and 
additions, and the ability to blindly separate nonstationary 
sources regardless of their detailed statistical structure. 

1. INTRODUCTION 

The separation of multiple unknown sources from multi- 
sensor data has many applications, including the isolation 
of individual speech signals from a mixture of simultaneous 
speakers (as in video conferencing or the often-cited “cock- 

tail party” environment), the elimination of cross-talk be- 
tween horizontally and vertically polarized microwave com- 
munications transmissions, and the separation of multiple 
cellular telephone signals at a base station. In the past decade 
or so, a number of significant methods have been introduced 
for blind source separation, of which we review a few of 
the most popular here. One of the earliest and most ef- 
fective methods is a constant-modulus-based method pub- 

lished in 1985 by Treichler and Larimore [l]. This method 
achieves simultaneous separation and equalization (i.e., sep- 
aration of convolutive mixtures) by minimizing the devia- 
tion of the separated output magnitudes from a fixed gain. 
This method is very simple and efficient and works well 
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even for non-constant-modulus signals with a sub-Gaussian 
kurtosis (which includes most communications signals). 

Jutten and Herault introduced one of the most popu- 
lar methods [2]. This method works well in many appli- 
cations, particularly cross-talk situations in which a rela- 
tively modest amount of mixing occurs. Methods for non- 
Gaussian sources have also been developed, including [3] 

and others’. A method by Belouchrani, et al. can separate 
stationary Gaussian sources with different autocorrelation 

statistics [4]. 
In many applications of blind source separation, the re- 

ceived signals are nonstationary. Nonstationarity may arise 
either from the source signals themselves (such as speech), 
or from channel impairments (such as fading in wireless 
communications channels). Most techniques for blind source 
separation assume stationarity of the signals and depend on 
reliable estimation of second-order or higher-order statis- 
tics. These methods may have difficulty when applied to 
nonstationary signals. 

Several methods developed explicitly for the nonstation- 
ary source separation have been published recently. Be- 
louchrani and Amin have developed a time-frequency ex- 
tension of the method in [5] for nonstationary sources, and 
Parra, et al. have developed another method based on fre- 
quency decomposition of several successive blocks of time 
[6]. While these methods appear effective, and the latter 
can also separate convolutive mixtures, they are block-based 
methods requiring somewhat sophisticated and expensive 
processing. Matsuoka, et al. present an on-line, adaptive ex- 
tension of the Jutten-Herault method which, somewhat like 
the method proposed here, attempts to minimize the average 
cross-correlation between separated channels while normal- 

izing the output energy [7]. 

We propose a new method for blind source separation 
which requires only nonstationarity and independence of 
the sources to achieve separation. A very efficient on-line, 
LMS-like algorithm is derived which achieves separation 
while normalizing the average energy of each output chan- 
nel. This algorithm offers advantages in terms of simplicity 

1 It should be noted here that the CMA-based method by Treichler and 
L.&more also depends on the non-Gaussianity of the sources. 



or efficiency as compared to existing methods, along with 
tracking capability for time-varying mixtures. The opti- 
mization criterion is presented in the second section of this 
paper, an efficient adaptive algorithm is derived in the third 
section, and simulations which illustrate its performance are 
presented in the fourth section. Some perspectives on the 
results are discussed in the final section. 

2. A NONSTATIONARY SOURCE SEPARATION 
CRITERION 

The general source separation problem with instantaneous 
mixtures can be described as 

x(n) = As(n), (1) 

where s(n) is a vector of it4 zero-mean, statistically inde- 
pendent source processes at time-sample n, x(n) is a vector 
of N sensor measurements, N > M, and A is a mixing ma- 
trix of rank equal to or greater than the number of sources. 
The goal of blind source separation is to determine a matrix 
B which, when applied to the received sensor data as in 

y(n) = Bx(n), C-9 

recovers (separates) the individual sources up to an unknown 
permutation and unknown channel gains, which cannot be 
uniquely determined without additional information [7]. In 
a noise-free case, B will be a pseudo-inverse of the mixing 
matrix A up to unknown permutation, gain, and null-space 

components. 
It has been observed in many papers on blind source sep- 

aration that a necessary condition for the separation of zero- 
mean, statistically independent sources is that the cross- 
correlations of the output channels equal zero. However, 
this is not a sufficient condition, as is well known and eas- 

ily illustrated by the following example. Consider the sim- 
ple case of two sources and two sensors, where the sources 
are stationary processes with variances UT and a;, and the 
mixing matrix is A = I. Clearly, the received signals are 
already separated, and B = I is the desired solution. How- 
ever, it is easily shown that the cross-correlation 

E[YIYZ] = hh~: + b&2& (3) 

and, for given ui’s, there are an infinite number of B ma- 
trices with zero cross-channel correlation which do not sep- 
arate the sources. However, it is noted in [7] that this am- 
biguity exists only for sources with fixed u;‘s. While for 
any arbitrary pair of variances uf and uz there exist an in- 
finite number of decorrelating but not separating B’s, these 
classes are different for different source variances, and only 
a truly separating solution yields zero cross-channel corre- 
lation for all variance combinations. This is the key insight 
on which nonstationary blind source separation algorithms 

are based. In effect, these methods take multiple snapshots 
of the short-time cross-correlation at different times, and by 
minimizing all of these simultaneously, exploit the changes 
in the relative channel variances to find a truly separating 
solution. 

This paper uses the same basic insight, but proposes a 
new criterion for exploiting it which leads to a particularly 
efficient and convenient algorithm. We propose to minimize 
the following criterion: 
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where 

Fyty, (n) = C h(k)yi(n - k)Yj (n - k) (5) 
k 

where h(k) is a lowpass averaging filter for computing a 
short-term estimate of the cross-correlation of output chan- 
nels yi and yj at time n. The first term in the criterion is to 
minimize the average squared magnitude of the short-term 
cross-correlations of the output signals (which, as shown in 
[7], is only achieved for nonstationary signals by a separat- 
ing solution), while the second term demands that the output 
signals in each channel have unit energy on average. In our 
experiments, we have always chosen A equal to the ratio of 
the number of cross-correlation and auto-correlation terms, 
to equally weight in some sense the two components of the 
criterion. 

3. ADAPTIVE ALGORITHM 

There are many ways to construct a numerical algorithm 
based on the above criterion for blind nonstationary source 
separation, yielding different tradeoffs in terms of computa- 
tional efficiency, convergence rate, block-based or adaptive 
forms, etc. However, in many applications, a computation- 
ally efficient, adaptive method which can track slow varia- 
tions in the mixing parameters is desired. We derive here 
a stochastic gradient (LMS-like) algorithm which has these 
characteristics. 

For the optimization of the demixing matrix, B, a stochas- 
tic gradient update takes the form 

where 

B n+l = Bn - pvn (6) 

where p and q are the row and column indices of the gradi- 
ent matrix. Note the use of the instantaneous value at time 



n of the error function in (4) in the gradient computation. 
The (p, q)th element of the instantaneous gradient matrix 
can easily be shown to be 

V,,(n) = 4 2 ~y,,y,~~,,~, + ~X(+Y~,Y~ - l)(+~,,+,) (8) 
i#P 

The first sum in the above equation can conveniently be ex- 
pressed as 

M M 
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rY,,Y,rY‘,~, = rY,,Y.rY*,% - ~Y,,Y,~Y,,% (9) 
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With this observation, the gradient can be succinctly ex- 

pressed in matrix form as 

v, = 4(ii,,ii,, - diag&,)[ll . ‘11~ ii,,) 

+2q@,x - 1) c3 fiyx) (10) 

where @ is a Kronecker (term-by-term) product, ii,, is 
the matrix of averaged correlation products +y,yl (n) defined 

in (51, fiyx is the corresponding matrix of averaged cross- 

correlation products between the output and input vectors, 
and 1 is the all-ones matrix. 

The above matrix expression for the stochastic gradient 
update yields an efficient and straightforward computation 
once the short-time correlations are available. We now de- 
rive efficient recursive updates for these components for a 
convenient form of the averaging filter. For computational 
efficiency, we select a first-order IIR averaging filter with 
impulse response 

h(k) = crkU(k) (11) 

where u(k) is the unit step function and 0 < cr < 1. With 
this form, the elements of (1 - o)-‘ii,, can easily be up- 
dated recursively according to 

fyry, (n) = aFyy,y, (n) + Yi (nbj (n), 

and similarly 

(121 

Fyzz, (n) = aFy,m, (n) + Yi(n)zj (n) (13) 

for (1 - a)-liiy,. This yields the following simple recur- 

sive algorithm for nonstationary blind source separation. 

Compute output: 
yn = Bnx, (14) 

Update short-time correlations: 

R YYn+l = aRyy, + ynu,T (15) 

R Y%+l = dtyx, + ynx: (16) 

Update separation matrix: 

B ra+1 = B, - ~(1 - cr)2 

(4(R,,R,, - diag(q,)[ll . . .l] @ Ryx) 

+2X(R,, - 1) @ Ryx) (17) 

For A4 sources and N sensors, the cost of the output compu- 
tation is MN multiplications and M( N - 1) additions per 
sample time. The qy and RyX updates require M2 + M 
multiplications and ( M2 + M)/2 additions, and 2M N mul- 

tiplications and MN additions, respectively. The gradient 
update requires M 2 N + 4 MN multiplications and M 2 N + 
3MN additions, for a total operation count of M2 N + 
5MN + M2 + M multiplications and M2N + 4MN + 
(M2 - M)/2 additions per vector sample. 

4. SIMULATIONS 

Several simulations have been performed to confirm the ef- 
ficacy of the proposed method. For the following simulation 
with two sources and sensors, the mixing matrix is 

as used in [7]. The sources, shown in Figure 1, are binary 

Figure 1: Nonstationary sources used in the simulation 

random signals multiplied by lowpass filtered Gaussian sig- 
nals, and may be considered a crude approximation to com- 
munications signals undergoing fading. Figure 2 plots the 
adaptation of the four coefficients in the demixing matrix 
B with p = 0.0001 and Q = 0.9. Note the very rapid 
initial convergence to substantial separation, followed by 
much slower refinement to almost perfect separation. Fig- 
ure 3 shows the separated outputs, which closely resemble 



Figure 2: Evolution of the demixing matrix coefficients dur- 

ing adaptation 
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Figure 3: Separated source outputs 

scaled versions of the original sources after initial conver- 
gence. Experiments with more sources and sensors yield 
similar results. 

5. CONCLUSIONS 

Effective blind source separation can be achieved by ex- 
ploiting nonstationarity of the sources. Nonstationary blind 
source separation algorithms appear particularly relevant for 
practical applications because many sources of interest, such 
as speech or fading signals, exhibit nonstationarity but may 
not otherwise present features (such as non-Gaussian statis- 
tics or different auto-correlation structure) required by other 
methods. In comparison with other nonstationary blind source 
separation algorithms, the method proposed here results in 
a simnle and efficient on-line stochastic gradient algorithm 

requiring only multiplications and additions, which are ef- 
ficiently implemented in signal processing hardware. It ap- 
pears to exhibit the traditional characteristics of LMS-like 
algorithms including excellent robustness and numerical sta- 
bility, the ability to track slow variations in the environment, 
and relatively slow convergence. 
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