DETECTION OF POINT TARGETS IN IMAGE SEQUENCES BY HYPOTHESIS TESTING:
A TEMPORAL TEST FIRST APPROACH

Alexis P. Tzannes

Air Force Research Laboratory
Hanscom AFB
alexis@max.rl.plh.af.mil

ABSTRACT

This paper addresses the problem of designing an efficient and ef-
fective image sequence processing scheme that will successfully
detect very small (point) targets in a cluttered background when
both the target and clutter are moving through the image scene.
The specific application area was detection of targets such as air-
planes in infrared (IR) image sequences of a cloudy sky which
have been taken by a stationary camera. In general we assume
that targets are typically one to two pixels in extent and move only
a fraction of a pixel per frame, are often low amplitude, and are
found in scenes which also contain evolving clutter, e.g. clouds.
Our algorithm is based on signal processing and detection the-
ory, includes a perfect measurement performance analysis, and can
be made computationally efficient compared to other approaches.
Thus the algorithm could be applicable to other image sequence
processing scenarios, using other acquisition systems besides IR,
such as detection of small moving objects or structures in a biomed-
ical or biological imaging scenario or the detection of satellites,
meteors or other celestial bodies in night sky imagery acquired
using a telescope. We present a GLRT solution, perfect measure-
ment analysis including ROC curves, and results using real-world
infrared data.

1. INTRODUCTION

The problem of detecting and tracking point targets in image se-
quences has been an active area of research for several years. Ini-
tial algorithms separated the problem into a spatial detection stage,
followed by a temporal association or tracking stage [1, 2]. These
algorithms are adequate when the targets are bright compared to
the background but perform poorly with dim, small targets in se-
vere clutter, since such targets may not pass the initial spatial de-
tection and thresholding stage. More recent approaches used mul-
tiple frames to incorporate temporal as well as spatial information,
often referred to as “track before detect” algorithms [3, 4]. The
standard approach poses the tracking problem as the detection of
a known signal in 3-D noise. The main drawbacks of these tech-
niques are that they depend on specific statistical noise and clutter
distributional models which may not correspond well to real data,
and are very computationally intensive since the entire 3-D space
must be filtered for all possible trajectories for each target veloc-
ity. Suboptimum approaches that use dynamic programming have
been proposed to reduce the computational complexity [5, 6] at the
cost of reduced performance, especially for dim targets, or assume
the clutter can be whitened and use sequential estimation [7].
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The original idea of our approach, first proposed in [8, 9], was
that temporal processing first (that is, filtering the profile of each
pixel in time before spatial processing) can be a powerful tool in
detecting point targets, providing good clutter suppression at rel-
atively low computational cost. Temporal processing is effective
because it exploits the difference between the temporal profiles of
pixels through which a target passes, compared to those affected
by clear sky or cloud clutter. Pixels that see clear sky or other fea-
tures which are constant in time will have time profiles that are
white noise. A pixel that is affected by a point target will have a
pulse like shape, with the width of the pulse being inversely pro-
portional to the target velocity. Pixels that are affected by cloud
edges or other clutter features will have temporal profiles that be-
have less regularly, but which may be amenable to statistical mod-
eling. Temporal processing is computationally efficient because it
involves 1-D processing first, and can eliminate the vast majority
of pixels as candidates before 2-D processing is employed.

The novelty in this paper is that it builds on the intuition in
[8, 9] by formulating the detection problem in a theoretically sound
hypothesis testing framework. In this framework we introduce de-
terministic and statistical models for targets, clutter, and clear sky
which we have developed through the study of a large database
of real IR sequences, and then present the corresponding decision
rule. An upper bound on the performance of the resulting decision
rule is also presented and utilized to select thresholds based on the
desired probability of detection (PD) and probability of false alarm
(PFA).

2. HYPOTHESIS TESTING OF TEMPORAL PROFILES

The initial problem is a 3-ary hypothesis testing scenario: the hy-
potheses are target plus noise, clutter plus noise, and background
(here, clear sky) plus noise. (The fourth possibility, target plus
clutter plus noise, will be treated here as simply clutter plus noise.)
The background is modeled as the sum of a constant and tem-
porally white background noise whose variance is constant for a
given imaging system and can be experimentally measured. Very
large or slow-moving clutter will appear as a slowly varying ran-
dom signal plus the same noise process. In previous work [9] we
showed that a simple temporal bandpass filter successfully elim-
inated both of these cases by using a threshold determined from
the noise variance. Thus this filter can be used as a pre-processing
stage. After pre-processing, the remaining pixels can reliably be
considered to be either targets or potential false alarms caused by
clutter from evolving cloud edges.

The time signature of a pixel affected by a point target will



1750 1150

b M\M/v\/\n/\/\,j\/\/ww e

o\
1650 1050
0

20 40 60 80 100 0 20 40 60 80 100
1300 1300

1200 1250
WWJ\V,MW N

1100 1200
0 20 40 60 80 100 0 20 40 60 80 100

1150 1400
WW

1100 WMMM
20 4 00 o 20 40 60 8 10
1100

1050, 1350

1700

1350 1100
20 40 60 80 100 0 20 40 60 80 100

IEEERE
1050 1650 /\V\W
T Y oo . i ~
0 20 40 60 8 1 20 40 60 80
1300 1050
. AR AN
time (frame #) time (frame #)

100

1000 1600
00
1280 1000
0

Figure 1: Temporal pixel profiles of real targets, extracted from
infrared image sequences, are shown in left column. Simulated
targets, created using the model with varied values of the unknown
parameters, are shown in the right column.
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Figure 2: Plots of temporal profiles of challenging cloud clutter
pixels.

have a pulse like shape. The width of the pulse will be inversely
proportional to the speed of the target, whereas the intensity will
be proportional to its strength. Assuming that the target is a true
point source, the target profiles are actually dilated or contracted
versions of one dimensional profiles of the point spread function
(PSF) of the imager, which we have measured [10]. Thus we have
a known deterministic model for the target signal with unknown
parameters determining its velocity, intensity, background level,
and time of arrival. We define rarget intensity as the highest devi-
ation of any single signal sample from the background level over
the entire signal. SNR is then defined as the ratio of target intensity
to the background noise standard deviation. Figure 1 shows four
target temporal profiles extracted from real image sequences in the
left column and a set of target temporal profiles, simulated using
the model, in the right column.

The other pixels which survive the pre-processing are gen-
erally caused by target-like clutter, from the edges of evolving
clouds. Some typical difficult cloud clutter pixels are shown in
Fig. 2. These pixels are expected to have temporal profiles with
broader peaks than those seen in typical target profiles (Fig. 1).
Through extensive analysis of our large database of real world IR
sequences, we have determined that for cloud clutter these pixel

profiles are well fit by a first order Markov model: a clutter pixel
value at time k is modeled as the sum of the value of that pixel at
time k — 1 and a white Gaussian noise or error term. The mag-
nitude of the standard deviation of the driving noise of the model
describes the severity of the clutter in a scene. We define signal-
to-clutter ratio (SCR) as the ratio of target intensity to the average
clutter model standard deviation in the scene.

Based on these target and clutter models we developed a hy-
pothesis test by constructing the following statistic for a general-
ized likelihood ratio test
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where 7 (k) is the pixel temporal profile, f(k; p) is the determinis-
tic target model with unknown parameter vector p, and o and o2
are the variances of the input noise to the Markov model and the
background camera noise, respectively. The first term in the sum-
mation measures how well a given pixel temporal profile matches
the Markov clutter model, while the second term measures how
well it matches the target signature f(k;p). The detection statis-
tic is compared to a threshold to decide whether the pixel follows
the target or the clutter model. The unknown parameters p of the
target model must first be estimated from the data, for instance by
a set of velocity-matched filters.

3. UPPER BOUND PERFORMANCE ANALYSIS OF
GLRT

In this section we present a perfect measurement upper bound [11]
on the performance of the GLRT presented in the previous sec-
tion, by assuming knowledge or perfect estimates of the unknown
parameters in p, o, and o.. In practice, the unknown parameters
would be estimated from the observed signal, causing a degrada-
tion in the performance of the test. To obtain receiver operator
characteristic (ROC) curves for the test we need to determine the
PDF of the detection statistic A(R), under the two hypotheses. A
different method was required to analyze A(R) under each hypoth-
esis.

3.1. PDF of A(R) under clutter present hypothesis

Under the assumption that the received or observed temporal pro-
file r(k) follows the clutter model, the detection statistic becomes
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where w(k) is the first temporal difference of r(k). Writing r(k)
asr(k) =r(0)+ Zle w(j) gives
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The only random quantities in the above expression are the w(-)
terms. After considerable algebraic manipulation, A(R) can be
approximated as a difference of quadratics of normal random vari-
ables. The PDF of A(R) can then be expressed as a weighted sum



of central Chi-Square distributions [12, 13] of the form
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where x2 (z) is a central Chi-Square distribution with k degrees of
freedom and the coefficients ¢; and p can be determined from the
values of g and o, and the known signal f(k;p). Details on this
development are given in [14].

3.2. PDF of A(R) under target present hypothesis

Under the assumption that the received or observed signal r(k)
follows the target model, the detection statistic becomes
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where r'(k) is the first order temporal difference sequence given
by

r'(k) = f(k;p) — f(k — L;p) +n(k) —n(k —1). (6

To obtain the PDF of the expression in Eq. 5 we used a character-
istic function method. Here we make a slight change of notation,
using ny, for n(k) in Eq. 5. By viewing A(R) as a function of
the N independent Gaussian random variables ng, we express the
characteristic function of A(n1,n2,...,nN) as:
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where pr, (1) is the Gaussian distribution function of 15 . We can
separate this N-dimensional integration into N 2-dimensional in-
tegrations since A(n1,n2,...,ny) only contains cross-terms be-
tween adjacent ng. Thus @y (w) can be easily evaluated numeri-
cally. The PDF of A(R) can then be determined from the magni-
tude of the inverse Fourier transform of the characteristic function
Py (w).

3.3. ROC Curves

Using the PDF’s of A(R) derived in the previous section, we com-
puted ROC curves that can be used to gain insight into the perfor-
mance of the test under different situations and to select thresholds
depending on the desired PD and PFA. In Fig. 3 we plot PD vs PFA
for different velocity targets of the same intensity. The background
noise and clutter model standard deviations (o, and o) were set
to 3 and 4.5 respectively, which are typical values for our infrared
sequences. The target intensity parameter was set to 12 (SNR =
4, SCR = 2.67), which is the lower SNR limit of the targets we
are attempting to detect. Note that slower targets are more diffi-
cult to detect than faster ones, since they have smaller temporal
differences and essentially “look more like” clutter.

4. EXAMPLE RESULTS

In this section, we demonstrate the effectiveness of the proposed
algorithm by testing it on real infrared image sequences contain-
ing airplanes flying across the scene at long range. The sequences
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Figure 3: ROC curves for targets of varying velocities, at fixed
SNR =4 and SCR = 2.67.

Figure 4: Sample image from infrared image sequence. The out-
lined areas designate the location of the targets.

were acquired using a PtSi infrared camera with a 320x244 pixel
focal plane array, imaging at 30 frames per second. A single im-
age from a sample sequence is shown in Fig. 4. First all pixels
except targets and potential clutter false alarms were eliminated
through the pre-processing stage. For this sequence all but 105
pixels (.13%) were eliminated. A binary image indicating the lo-
cation of the pixels that passed the pre-processing step is shown
in Fig. 5. After applying the GLRT to these pixels and thresh-
olding, only 7 pixels were above the threshold. Using the ROC
curve shown in Fig. 3, we selected a threshold to ensure a worst
case PFA of 1075 for targets with velocities of .03 pixels/frame
or higher at an SNR of 4. This corresponds to a worst case PD of
approximately 99%. A binary image showing the location of the
pixels that were above the threshold is shown in Fig. 6. Notice that
both targets are successfully detected with zero false alarms.

The algorithm was applied to 12 image sequences, contain-
ing a total of 17 targets. Using the same threshold (selected as
described above) for all sequences, 13 of the 17 targets were suc-
cessfully detected with a total of 4 false alarms. These false alarms
were caused by moving clouds that are very thin spatially, result-
ing in temporal profiles that look very similar to those of target
pixels. These few situations could then benefit from further spatial
processing, discussed in the following section.



Figure 5: Binary image indicating in white the location of the pix-
els that passed the pre-processing step.

Figure 6: Binary image indicating in white the location of the pix-
els that were above the threshold after applying the GLRT. Notice
that both targets are successfully detected with zero false alarms.

5. SPATIAL HYPOTHESIS TEST

In severe clutter situations, additional spatial processing can be uti-
lized to eliminate false alarms. A spatial hypothesis test, similar in
nature to the temporal one described in Sec. 2, can be developed
using spatial models for the target and cloud clutter. Assuming that
the targets are true point targets, the target spatial profiles can be
modeled using the 2-D PSF of the imager. Because the clouds are
moving slowly across the scene, a 1-D spatial profile is essentially
a subsampled version of the temporal profile. Therefore an ap-
propriate Markov-type model will fit the spatial signature of cloud
clutter, over small spatial regions. Using these models, we devel-
oped a spatial hypothesis test, which is only applied to those pixels
that were above the threshold after the temporal GLRT. We have
obtained preliminary results but space limitation preclude includ-
ing them here. Examples demonstrating that this additional spatial
processing can eliminate false alarms in severe clutter situations
and increase the probability of detection for weak targets will be
included in the oral paper presentation.

6. CONCLUSIONS

In this paper we present an algorithm for the detection of small
moving objects in image sequences that also contain moving and

evolving clutter. Using temporal models for the targets and clutter
on a single pixel basis, we developed a hypothesis testing proce-
dure and derived and analyzed the performance of the correspond-
ing decision rule. We demonstrated the effectiveness of the re-
sulting algorithm on real infrared image sequences containing air-
planes flying at long range. Future work will concentrate on com-
pletion of the spatial hypothesis test introduced in the previous
section, as well as application of the approach to other scenarios
such as biological or biomedical imaging.
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