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ABSTRACT

Hidden Markov models are very important for analysis of
signals and systems. In the past two decades they have been
attracting the attention of the speech processing commu-
nity, and recentiy they have become the favorite modeis of
biologists. Major weakness of conventional hidden Markov
models is their inflexibility in modeling state duration. In
this paper, we analyze nonstationary hidden Markov mod-
els whose state transition probabilities are functions of time,
thereby indirectly modeling state durations by a given prob-
ability mass function. The objective of our work is to esti-
mate all the unknowns of the nonstationary hidden Markov

model, its parameters and state sequence. To this end, we
construct a Markov chain Monte Carlo sampling scheme
in which all the posterior probability distributions of the
unknowns are easy to sample from. Extensive simulation

results ehnw that the estimation n
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results.
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1. INTRODUCTION

Hidden Markov models (HMM’s) have played a prominent
role in many approaches to signal and system analysis. In

sneech processing thev are the nltimate tool fn! varioug

speech processing they are the ultimate tool for various
tasks of statistical modeling including speaker and speech
recognition [6]. In modern biology with the emergence of
molecular genetics and the advance of the Human Genome
Project, an immense amount of data is being produced
that require use of sequence analysis methods, and where
the HMM’s seem very well fitted for extracting information
from the data (3].

The conventional HMM has a major structural weak-
ness in that its state durations have fixed geometrical dis-
tributions, uleﬁ‘:u:y' uuuung its range of appucauions lOJ
Ferguson [4] introduced the variable duration HMM, where
each state duration is modeled by a probability distribu-
tion, which is not necessarily geometric. This gives the
HMM much more flexibility and widens the range of its
applicaiions. Most of the previous work on estimaiing vari-
able duration HMM’s is on extending the methods of the
conventional HMM’s, that is the dynamic programming al-
gorithm and maximum likelihood estimators. Later, a dif-
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ferent parametrization of variable state duration was intro-
duced, where the state transition probabilities are explicitly
modeled as funciions of time [7}, {8], and, thus, are referred
to as nonstationary HMM’s. It can be shown, however, that
the variable duration and nonstationary HMM’s are equiv-
alent, and that the latter are more tractable for analysis.

Recently, a Markov chain Monte Carlo (MCMC) scheme
has been applied to conventionali HMM’s {1]. Here we present
an MCMC procedure for estimation of non-stationary HMM’s.
It is assumed that the observed sequence is modeled by
a nonstationary HMM with known number of states, and
that the state sequence and all the model parameters are
unknown. We construct a Gibbs sampling scheme which
converges quickly and has posterior distributions that are
easy to samnle from. From the ﬂamnlmz of the posteriors
dra.wn after convergence, the state sequence and parameter
estimates of the model can straightforwardly be obtained.
The simulation results of the method show excellent perfor-
mance.

2. REVIEW OF CONVENTIONAL HMM’S

Here we provide a very brief review of conventional HMM’s
a.nd outline the main modeling problems related to them.
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states, Sk, where Sk € S, and 8 = {51, 52,...,5n}. The
system changes with time, and the state of the system at
the time instants t = 1,2,...,T, is denoted by g¢;, where
gt € S. Next, suppose that the dynamics of the system is
described by a Markov chain, thai is, whenever ihe system
is in state S;, there is a fixed probability that it will next
be in state S,. This is expressed by

P(q = S,|ge = Si, ge—1 = Sk, ....)
(;t“ Sl = S —a (1)

iy = G-

’-\

i1 = 259

The complete description of the state transitions is given
by the mairix A = {a,,}, where a,; > 0, and Z;’zl

In many modeling scenarios, it is assumed that the state
sequence is not known; that is; it is hidden from the ob-
server. Instead, at every time instant ¢, the system gener-
ates an observation y. according to a probability distribu-
tion that depends on the state ¢;. If the number of distinct
observations is M, and the set of observation symbols is
V = [y, v 1,!11 fl'ls- nrobabilitv rhefnl-\uhnna r\f nl'\.

= V1,2, VM Prooadinty

served symbols are given by an N x M matrix B whose

1
a,; = 1.



elements b,x are known as emission probabilities and are
defined according to

by = P(vrattlge=5,), 1<j<N, 1<k<M (2

M
where 3, _ by = 1.

Finally, to complete the specification of the model, one
needs to provide the initial state distribution defined by
m=Pg=5)i=12..N, with 30 x =1 The
three probability distributions A, B, and x are in short
denoted by A, or A = (A, B, 7).

Typically, a common assumption for an observed se-
quence ¥ = [y1 ¥2... yr] is that its joint probability mass

function conditioned on the state sequence ¢* =[q1 g2 ... ¢7]

and the parameters A is given by

-

T
P(yla,») = [] P(v:lae, ) (3)

t=1

which means conditional independence of the observations.
There are three basic problems related to HMM’s [6], and
in order of increasing complexity, they are:

1. Given a set of observations y7 = {y; y2 ... yr] and
the model parameters A, find the probability of the observed
sequence y, P(y|)).

2. Given a set of observations y7 = [y1 y2 ... y7]
and the model parameters A, find the corresponding state
sequence q.

3. Given a set of observations yT = [y1 2 ... yr), find
the state sequence q as well as the model parameters A.

The solutions to these three problems are well known
[6]. The first one can be solved efficiently by the forward-
backward procedure, the second, by the Viterbi algorithm,
and the third, by the iterative method of Baum-Welch.

3. NONSTATIONARY HMM'’S

An important weakness of the conventional HMM is its in-
flexibility to model state durations. If d is the duration of
a particular state, say Sk, then the probability of d is given
by

Pi(d) = ai (1 = axn)- (4)
The distribution of d is thus geometric, and although in
some practical cases it represents physical reality reason-
ably well, in many more applications, it is completely inap-
propriate.

One way of modifying the conventional HMM is by
way of introducing state duration densities, Pi(d), k =
1,2,...,N, [4], [6]. A state sequence according to this
model can be generated as follows:

1. Generate g; from the initial state distribution =.

2. Sett=1.

3. Obtain the duration of the state ¢, d, by sampling
from Pi(d), where g = Sk.

4. Sett =1t44d.

5. Draw the next state ¢g: from the transition probabil-
ities a,,, where ¢,y = S, # 5,.

6. Ift < T, go back to 3; otherwise terminate the
procedure.

¥

It is interesting to note that the self-transition prob-
abilities a;, are not explicitly used in these models. The
methods employed for solving the three basic problems of
conventional HMM’s can be extended to accommodate the
variable state duration HMM’s. The extensions, however,
entail increased computational load.

A different parametrization of the state duration can
be achieved by treating all the transition probabilities a.,
as functions of d, which we denote by a,;(d). They rep-
resent the probability that the system switches from state
S; to state S, given that the system was in state S, for d
consecutive time units [7], [8].

It can be shown that the two models are equivalent,
provided the first model gets the feature that a,,, i # j, is
a function of d. The direct relationship between the models
can be deduced by observing that the self-transition prob-
ability ai,(d) may be expressed in terms of the cumulative
distribution function, Fi(d), of the state duration by

aii(d) =1 - F,(d). (5)

The generation of states according to this model is sum-
marized as follows:

1. Generate ¢; from the initial state distribution x, and
set t=1.

2. Record the duration of the current state d.

3. Draw the next state g¢41, from a,,(d), where g. = S;,
and E:';I ay(d)=1.

4. Ift <T,sett=1t+1, and go back to 2; otherwise
terminate the procedure.

We find the second representation more tractable for
analysis. Also the implementation of MCMC sampling for
estimation of the parameters and states of the model is then
much easier. The models whose transitional probabilities
are functions of time are called nonstationary HMM’s.

4. ESTIMATION OF NONSTATIONARY
HMM’S BY MCMC SAMPLING

MCMC methods are computational schemes used for draw-
ing samples from complicated and high dimensional distri-
butions. The samples are then used to summarize informa-
tion about unknown quantities of a model or perform other
tasks such as comparison of various models. Gibbs sampling
is an important MCMC scheme where the transitional ker-
nel is formed by the full conditional distributions. In other
words, in many problems where drawing samples from com-
plex distributions is intractable, the Gibbs sampler exploits
the simplicity of sampling from the full conditionals.

In our problem, the joint distribution of the unknowns,
the state sequence q, the initial state probabilities », the
state transition probabilities A(d) = {ai;(d)}, and emission
probabilities B, is a complicated one, but we show that
the full conditionals are quite simple to sample from. We
make the assumption that the duration of the various states
follows Poisson distributions with various parameters. The
assumption is not restrictive by any means; the procedure
that follows can be replicated with minor modifications with
any probability mass function. If we do not want to assume
any parametric distribution, the procedure is still applicable
and its details will be presented elsewhere.



First we need to specify the prior distributions for all
the unknowns.

1. The prior for the initial probabilities x = [x; x5 ...
#~] is the Dirichlet distribution, or 1, %2, ..., *xy_3 ~
D(e1, az, ..., an), where a; > 0,i=1,2,..., N,

2. The state durations are modeled by Poisson distri-
butions, i.e., the probability that the duration of state S, is
d is given by

ﬂd-l -8

pi(d) = (d IR d=1,2,... (6)

where B: is the parameter of the Poisson distribution as-

sociated with the i—th state. All the f;’s have Gamma
distributions, G(u,v), or

u—1_—vp,
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Note that the self-transition probabilities are determined
from (5). The outward state transition probabilities a;,(d),
i # 7, can be obtained from w;(d)(1—a.(d;)), where w,,(d)
is the transition weight from state S, to S;, given that the
duration of S, has been d. For all ¢ and all d, the weights
must satisfy E;’:x wi,(d) = 1, where j 7# i. For some mod-
els, the wq,(d)’s do not have to be functions of d. In the se-
quel they are regarded as constant parameters, whose prior
dlstnbutxon is Dirichlet, or w, ~ D(au, asz, ..., ai N~1)
where wT = [wi wiz ... Wi—1 Wiig1 ... w,N-1]. We rep-
resent a.ll the weights by the N x (N — 1) matrix W defined
by WT = [w; w2 ... wy].

3. The emission parameters B =
Dirichlet prior bi ~ D (v:1, 12, ..., ') and b, =

. bim—1).

4. The priors of the states g, are uniform, i.e., p(g. = S,)

=1/N.

>0 v>0. (M)

{b,x} also have a
[b|l bl2

5. GIBBS SAMPLING OF NONSTATIONARY
HMM’S

With the chosen priors, the Gibbs sampler is very easy to
implement. The steps are the following:
1. Draw = from

f(x| g1, Wk=1), B(k=1) q(*=1) y)
o« D1 + 6q§k_1)sl,ag + 6q§»_1)5.2, ..., aN + ngg_;)SN)

(8)

where § Vs is the Kronecker delta function, or §,, =1

fort—],and 6.,—0fort;é]
2. Draw ﬁf ,fort1=1,2,..., N, from

f(ﬁ'|,r(k),w(k-1),B(k—l)’q(k—l),y) .
“g(u+&‘(k—l),v+m(k—1)) (9)

where :1“ D= z‘_l @+ Vasy Iy} is the indicator func-

tion, and m(k ) is the number of segments in state S, in
iteration k — 1.

3. Draw w(k) from

F(w,|x®), gio) plk=D q(" D.y)

o D(all +n( 1)’02+n(k 1) (k_l)

y Xy, N1 +n|,N_1

(10)

(k=

where n,, Dis the number of transitions from state S; to

state S,.
4. The a{¥'(d)’s are obtained from

() =1- Z P(d = k|8) (11)

where P(-) is the shifted Poisson probability mass function.
The a{}(d)’s, i # j, are found from a{(d) = w1 -

o
5. Draw bf") from

f(bilx®), g% W) q(k—l) y)

o D(vis + msl Doy + ﬁlE: DM+ m(k 1))
(12)
where m(; 1) is the number of symbols v, in state S,.

6. Draw q£ ) from

P(q' — SI (") T(k) ﬂ(") wik) B(")’y)
o Plaeat®s, 4 (ge) P lar, € Dan))  (13)
P(yriqz)
where ) = [¢{®), ..., ¢{*,, (5T, ..., ¥ ™), @™ (g—1) and
d(+ )(q,+1) denote the durations of the states q:—1 and
gi+1, respectively. The duration of the former is measured
from the first outward state transition left of t —1to t —1,
and the latter from t+1 to the first outward state transition
right of ¢ + 1.

6. SIMULATION RESULTS

Experiments were made for the case of N = 3 states and
M = 5 emission variables. The length of the tested se-
quence was T = 400. The parameters of the true model
were

x=[0.8 0.1 0.1]

=[10 20 35]

0.1 0.9
wW=|09 01
0.1 0.9

and

0.010 0.003 0.800 0.100 0.087

0.800 0.100 0.020 0.009 0.071
B
0.010 0.003 0.050 0.050 0.887

The parameters of the Dirichlet distributions a’s and 4’s
were all set to 1/2. The Gamma distribution had parame-
ters 4 = 8 and v = 1.4.

The initial state sequence was generated from uniform
priors, and it is shown in Figure la (dotted line) together
with the true state sequence (solid line). The MAP esti-
mator was used for the state sequence estimation, and it is
defined by

q = arg max{P(q®|y,AM)} (14)
q

where k is the iteration number. In Figure 1b we have plot-
ted the MAP estimate together with the true sequence. Out



of 400 samples, there were only 3 mismatches, although, as
can be seen from Figure la, the initial chain was completely
different from the true one.

The posterior probability of the estimated sequences is
displayed in Figure 2 as a function of the iteration number.
It is obvious that the chain needed about 700 iterations to
converge. The convergence depends on the parameters of
the nonstationary HMM.

Figure 3 shows the histograms of the samples drawn
from the posterior of some of the model parameters. We
chose to present the results for wzi, w2s, B1, B3, bas, and
b11. The histograms were constructed from the samples
obtained between iterations k; = 2000 and k; = 2500. We
can see that all the histograms are concentrated around the
true values of the model parameters. ‘
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Figure 1: (a) The initial state sequence (dotted line) and
the true state sequence (solid line) used in the simulation.
(b) The MAP state sequence (dotted line) and the true
state sequence(solid line).

7. CONCLUSIONS

We have presented a Gibbs sampling procedure for param-
eter estimation of nonstationary HMM’s. All the param-
eters of the model except for the number of states were
unknown. The scheme is easy to implement because it is
straightforward to draw samples from the conditional dis-
tributions that define the scheme. The experiments showed
quick convergence and very good accuracy of the estimated
parameters.

Figure 2: The log of the posterior probability of the esti-
mated state sequence at each iteration.
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Figure 3: The histograms for several parameters. These
were constructed from the samples of parameters between
the iterations 2000 and 2500.
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