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ABSTRACT 

Hidden Markov models are very important for analysis of 
signals and systems. In the past two decades they have been 
attracting the attention of the speech processing commu- 
nity, and recently they have become the favorite models of 
biologists. Major weakness of conventional hidden Markov 
models is their inflexibility in modeling state duration. In 
this paper, we analyze nonstationary hidden Markov mod- 
els whose state transition probabilities are functions of time, 
thereby indirectly modeling state durations by a given prob- 
abiity mass function. The objective of our work is to esti- 
mate all the unknowns of the nonstationary hidden Markov 
model, its parameters and state sequence. To this end, we 
construct a Markov chain Monte Carlo sampling scheme 
in which all the posterior probability distributions of the 
unknowns are easy to sample from. Extensive simulation 
results show that the estimation procedure yields excellent 
results. 

ferent parametrization of variable state duration was intro- 
duced, where the state transition probabilities are explicitly 
modeled as functions of time [7], [8], and, thus, are referred 
to as nonstationary HMM’s. It can be shown, however, that 
the variable duration and nonstationary HMM’s are equiv- 
alent, and that the latter are more tractable for analysis. 

Recently, a Markov chain Monte Carlo (MCMC) scheme 
has been applied to conventional HMM’s [I]. Here we present 
an MCMC procedure for estimation of non-stationary HMM’s. 
It is assumed that the observed sequence is modeled by 
a nonstationary HMM with known number of states, and 
that the state sequence and all the model parameters are 
unknown. We construct a Gibbs sampling scheme which 
converges quickly and has posterior distributions that are 
easy to sample from. From the samples of the posteriors 
drawn after convergence, the state sequence and parameter 
estimates of the model can straightforwardly be obtained. 
The simulation results of the method show excellent perfor- 
mance. 

1. INTRODUCTION 2. REVIEW OF CONVENTIONAL HMM’S 

Hidden Markov models (HMM’s) have played a prominent 
role in many approaches to signal and system analysis. In 
speech processing they are the ultimate tool for various 
tasks of statistical modeling including speaker and speech 
recognition [6]. In modern biology with the emergence of 
molecular genetics and the advance of the Human Genome 
Project, an immense amount of data is being produced 
that require use of sequence analysis methods, and where 
the HMM’s seem very well fitted for extracting information 
from the data [3]. 

The conventional HMM has a major structural weak- 
ness in that its state durations have fixed geometrical dis- 
tributions, thereby limiting its range of applications [6]. 
Ferguson [4] introduced the variable duration HMM, where 
each state duration is modeled by a probability distribu- 
tion, which is not necessarily geometric. This gives the 
HMM much more flexibility and widens the range of its 
applications. Most of the previous work on estimating vari- 
able duration HMM’s is on extending the methods of the 
conventional HMM’s, that is the dynamic programming al- 
gorithm and maximum likelihood estimators. Later, a dif- 

Here we provide a very brief review of conventional HMM’s 
and outline the main modeling problems related to them. 
Consider a system that is described by a set of N distinct 
states, Sk, where Sk E S, and S = {Si , SZ., . . . , SN}. The 
system changes with time, and the state of the system at 
the time instants t = 1,2,. . . ,T, is denoted by qt, where 
qt E S. Next, suppose that the dynamics of the system is 
described by a Markov chain, that is, whenever the system 
is in state Si, there is a fixed probability that it will next 
be in state S,. This is expressed by 

q&+1 = &I@ = s,, Qt-1 = Sk, . ...) 

= P(qt+1 = S3lqt = S,) = 63. 
(1) 

The complete description of the state transitions is given 
by the matrix A = {a,,}, where utl >_ 0, and c,“,l a,l = 1. 
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In many modeling scenarios, it is assumed that the state 
sequence is not known, that is, it is hidden from the ob- 

server. Instead, at every time instant t, the system gener- 
ates an observation Yt according to a probability distribu- 
tion that depends on the state qt. If the number of distinct 
observations is M, and the set of observation symbols is 
v = {v,,w ,..., VM}, the probability distributions of ob- 
served symbols are given by an N x M matrix B whose 



elements b,k are known as emission probabilities and are 
defined according to 

b,k = P(Vk at +Jt =s,), l<jlN, 1lklM (2) 

where ~~=, b,k = 1. 
Finallv. to comolete the soecification of the model. one 

needs to -provide the initial state distribution defined by 

*t = P(ql = S,), i = 1,2,. . . , N, with c:, r, = 1. The 
three probability distributions A, B, and z are in short 
denoted by X, or X = (A, B, s). 

Typically, a common assumption for an observed 8e- 
quence y = [yr yz . . . IT] is that its joint probability mass 
function conditioned on the state sequence qT = [ql (Iz . . . qT] 
and the parameters X is given by 

, 

P(Yl% 4 = fi PbhlPt, A) (3) 
t-1 

which means conditional independence of the observations. 
There are three basic problems related to HMM’s [6], and 
in order of increasing complexity, they are: 

1. Given a set of observations yT = [al y2 . . . yT] and 
the model parameters X, find the probability of the observed 
sequence y, P(ylX). 

2. Given a set of observations yT = [yl y2 . . . yT] 
and the model parameters X, find the corresponding state 
sequence q. 

3. Given a set of observations yT = [yl y2 . . . yT], find 
the state sequence q as well as the model parameters X. 

The solutions to these three problems are well known 
[6]. The first one can be solved efficiently by the forward- 
backward procedure, the second, by the Viterbi algorithm, 
and the third, by the iterative method of Baum-Welch. 

3. NONSTATIONARY HMM’S 

An important weakness of the conventional HMM is its in- 
flexibility to model state durations. If d is the duration of 
a particular state, say Sk, then the probability of d is given 
by 

Pk(d) = a;,‘(1 - akk). 

The distribution of d is thus geometric, and although in 
some practical cases it represents physical reality reason- 
ably well, in many more applications, it is completely inap 
propriate. 

One way of modifying the conventional HMM is by 
way of introducing state duration densities, Pk(d), k = 
1,2,. . . , N, [4], [6]. A state sequence according to this 
model can be generated as follows: 

1. Generate ql from the initial state distribution r. 
2. Set t = 1. 
3. Obtain the duration of the state qt, d, by sampling 

from A(d), where qt = Sk. 
4. Set t = t + d. 
5. Draw the next state qt from the transition probabii- 

ities a,], where qt-l = S, # S,. 
6. If t < T, go back to 3; otherwise terminate the 

procedure. 

, 

It is interesting to note that the self-transition prob- 
abilities sir are not explicitly used in these models. The 
methods employed for solving the three basic problems of 
conventional HMM’s can be extended to accommodate the 
variable state duration HMM’s. The extensions, however, 
entail increased computational load. 

A different parametrization of the state duration can 
be achieved by treating all the transition probabilities a,, 
as functions of d, which we denote by a,,(d). They rep 
resent the probability that the system switches from state 
Si to state S, given that the system was in state S, for d 
consecutive time units [7], [8]. 

It can be shown that the two models are equivalent, 
provided the first model gets the feature that a,,, i # j, is 
a function of d. The direct relationship between the models 
can be deduced by observing that the self-transition prob- 
ability ais may be expressed in terms of the cumulative 
distribution function, F,(d), of the state duration by 

aii(d) = 1 - F,(d). (5) 

The generation of states according to this model is sum- 
marized as follows: 

1. Generate q1 from the initial state distribution x, and 
set t=1. 

2. Record the duration of the current state d. 
3. Draw the next state qt+l, from a,,(d), where qt = Si, 

and c,“,l as3 (d) = 1. 
4. If t < T, set t = t + 1, and go back to 2; otherwise 

terminate the procedure. 
We find the second representation more tractable for 

analysis. Also the implementation of MCMC sampling for 
estimation of the parameters and states of the model is then 
much easier. The models whose transitional probabilities 
are functions of time are called nonstationary HMM’s. 

4. ESTIMATION OF NONSTATIONARY 
HMM’S BY MCMC SAMPLING 

MCMC methods are computational schemes used for draw- 
ing samples from complicated and high dimensional distri- 
butions. The samples are then used to summarize informa- 
tion about unknown quantities of a model or perform other 
tasks such as comparison of various models. Gibbs sampling 
is an important MCMC scheme where the transitional ker- 
nel is formed by the full conditional distributions. In other 
words, in many problems where drawing samples from com- 
plex distributions is intractable, the Gibbs sampler exploits 
the simplicity of sampling from the full conditionals. 

In our problem, the joint distribution of the unknowns, 
the state sequence q, the initial state probabilities x, the 
state transition probabilities A(d) = {siJ (d)}, and emission 
probabilities B, is a complicated one, but we show that 
the full conditionals are quite simple to sample from. We 
make the assumption that the duration of the various states 
follows Poisson distributions with various parameters. The 
assumption is not restrictive by any means; the procedure 
that follows can be replicated with minor modifications with 
any probability mass function. If we do not want to assume 
any parametric distribution, the procedure is still applicable 
and its details will be presented elsewhere. 



First we need to specify the prior distributions for all 
the unknowns. 

where nit-‘) is the number of transitions from state Si to 
state S, . 

1. The prior for the initial probabilities x = [xr x2 . . . 
RN] is the Dirichlet distribution, or ~1, x2, . . . , sN-1 N 
D(a1, Q2, . . . . a~), where oi > 0, i = 1,2,. . . , N. 

2. The state durations are modeled by Poisson diitri- 
butions, i.e., the probability that the duration of state S, is 
d is given by 

d--l ,-A 
pi(d)= qdsl)! , d=l,2,... (6) 

4. The $)(d)‘s are obtained from 

c@(d) = 1 - 2 P(d = klp$k’) 

kzl 
(11) 

where pi is the parameter of the Poisson distribution as- 
sociated with the i-th state. All the pi’s have Gamma 
distributions, S(u, w), or 

where P(e) is the shifted Poisson probability mass function. 

The a$)(d)?s, i # j, are found from o{:‘(d) = ~~~‘(1 - 

u!+‘(d)) 11 * 
5. Draw bik) from 

f (bil+(k), S(“), Wck), q(k-l), y) 

a D(7il + m,l - (k-1), ri2 + m(,k-‘), . . . , r t t M + ~!~“) 
8 

where fi(iik-‘) is the number of symbols u, in state S,. 
(12) 

6. Draw qik) from 

VU 
L 

u le-vh 
Pi N r(u)@‘- , u>o, u>o. (‘1 

Note that the self-transition probabilities are determined 
from (5). The outward state transition probabilities “i,(d), 
i # j, can be obtained from wiJ(d)(l-aus(d where w,,(d) 
is the transition weight from state S, to S,, given that the 
duration of S, has been d. For ah i and all d, the weights 
must satisfy cfr wi,(d) = 1, where j # i. For some mod- 
els, the wi,(d)‘s do not have to be functions of d. In the se- 
quel they are regarded as constant parameters, whose prior 
distribution is Dirichlet, or w, cy D(cY,~, 0~2, . . . , oi,N-1) 
where ~7 = [W,I wi2 . . . W,r-1 Wi,i+l . . . W,,N-I]. We rep 
resent ah the weights by the N x (N - 1) matrix W defined 
by WT = [W, W2 . . . WN]. 

3. The emission parameters B = {b,c} also have a 
Dirichlet prior bi * ‘D (y,r, 7,2, . . . , y,~) and b, = [b,l b,z 
. . . bi,M-11. 

4. The priors of the states qt are uniform, i.e., p(qt = S,) 
= l/N. 

5. GIBBS SAMPLING OF NONSTATIONARY 
HMM’S 

With the chosen priors, the Gibbs sampler is very easy to 
implement. The steps are the following: 

1. Draw x from 

f blsc k-1) &k-l) B(k-‘),q(k-‘),y) 
CC a(W + ~4k-1)~~,‘~2 + +I)~~, . . . ,aN + bp(,L-‘lsN) 

(8) 
where 6 (~-l)~, is the Kronecker delta function, or ii,, = 1 

for i = J: and 6i, = 0 for i # j. 

2. Draw pi”‘, for i = 1,2,. . . , N, from 

f(~,I~(kL),w(k-‘),B(k--l),q(k-*),Y) 

a O(u + qkml), v + 7rt!k-1)) (9) 

where z”-‘) = CT=, Z(sj~-~)=~,l, Il.1 is the indicator func- 

tion, and ml’-‘) is the number of segments in state S, in 
iteration k - 1. 

3. Draw w!t’ from 

f(w,#“‘, flk’, b(‘-‘), qCk-l), y) 
(k-1) a D(cu,l + n,, , Q,2 + &) , I.. , Q:,N-1 + 7&:‘,, 

00) 

P(q, = S,]q’-: ~(~1, s’“‘, WC’), B(‘), y) 

a P(qtle?I, d(_‘(qt-1))P(qj:~“lqt, &‘)(cIttl)) (13) 
xe4!7t) 

where q?! = [q(‘) (k) (k-1) 
1 9 “‘9 s-1 3 Qt+1 , . . . ,q$!-l)], d’!‘(qt-1) and 

d(:-‘)(qt+l) denote the durations of the states qr-l and 
qt+l, respectively. The duration of the former is measured 
from the first outward state transition left of t - 1 to t - 1, 
and the latter from t+ 1 to the first outward state transition 
right oft+l. 

6. SIMULATION RESULTS 

Experiments were made for the case of N = 3 states and 
h4 = 5 emission variables. The length of the tested se- 
quence was T = 400. The parameters of the true model 
were 

r = [0.8 0.1 0.11 

p = [lo 20 351 

w= 

and 

[ 

0.800 0.100 0.020 0.009 0.071 
B = 0.010 0.003 0.800 0.100 0.087 . 

0.010 0.003 0.050 0.050 0.887 1 
The parameters of the Dirichlet distributions a’s and y’s 
were all set to l/2. The Gamma distribution had parame- 
ters u = 8 and v = 1.4. 

The initial state sequence was generated from uniform 
priors, and it is shown in Figure la (dotted line) together 
with the true state sequence (solid line). The MAP esti- 
mator was used for the state sequence estimation, and it is 
defined by 

q = arg max{P(qtkt)]y, XC’))} 
q(k) (14) 

where k is the iteration number. In Figure lb we have plot- 
ted the MAP estimate together with the true sequence. Out 



of 400 samples, there were only 3 mismatches, although, as 
can be seen from Figure la, the initial chain was completely 
different from the true one. 

The posterior probability of the estimated sequences is 
displayed in Figure 2 as a function of the iteration number. 
It is obvious that the chain needed about 700 iterations to 
converge. The convergence depends on the parameters of 
the nonstationary HMM. 

Figure 3 shows the histograms of the samples drawn 
from the posterior of some of the model parameters. We 
chose to present the res&s for ~21, w23, &, p3, 835, and 
bii. The histograms were constructed from the samples 
obtained between iterations kr = 2000 and k2 = 2500. We 
can see that aII the histograms are concentrated around the 
true values of the model parameters. ’ 

Figure 1: (a) The initial state sequence (dotted line) and 
the true state sequence (solid line) used in the simulation. 
(b) The MAP state sequence (dotted line) and the true 
state sequence(soIid line). 

7. CONCLUSIONS 

We have presented a Gibbs sampling procedure for param- 
eter estimation of nonstationary HMM’s. AR the param- 
eters of the model except for the number of states were 
unknown. The scheme is easy to implement because it is 
straightforward to draw samples from the conditional dii 
tributions that define the scheme. The experiments showed 
quick convergence and very good accuracy of the estimated 
parameters. 
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Figure 3: The histograms for several parameters. These 
were constructed from the samples of parameters between 
the iterations 2000 and 2500. 
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Figure 2: The log of the posterior probability of the esti- 
mated state sequence at each iteration. 


