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ABSTRACT

In this paper, we address the problem of estimating the
parameters of a noncausal autoregressive (AR) signal from
estimates of the higher-order cumulants of noisy observations.
The proposed family of techniques uses both 3rd-order and 4th-
order cumulants of the observed output data. Consequently, at
low SNR, they provide superior performance to methods based
on autocorrelations. The measurement noise is assumed to be
Gaussian and may be colored. The AR model parameters here
are directly related to the solution of a generalized
eigenproblem. The performance is illustrated by means of
simulation examples.

1. INTRODUCTION

There are several motivations behind the use of higher order
statistics in several areas of system identification and signal
processing. First, higher order cuamulants are blind to any kind of
Gaussian process. Hence, when the processed signal is non-
Gaussian and the additive noise is Gaussian, the noise will vanish
in the cumulant domain [9]. Thus, a greater degree of noise
immunity is possible. Second, cumulants are useful for
identifying nonminimum phase systems or reconstructing
nonminimum phase signals if the input signals are non-Gaussian.
That is because cumulants preserve the phase information of the
signal [9]. Third, cumulants are useful for detecting and
characterizing the properties of nonlinear systems. In this paper,
the first two properties are exploited.

Various methods have been suggested for MA, AR, and ARMA
model identification based on higher-order statistics
[1,2,3,4,5,6,7,8,9,10]. Since most of them have used second-
order statistics along with higher order statistics, their
performance has been sensitive to additive Gaussian noise.
Techniques that use second-order information can be particularly
sensitive to additive colored Gaussian noise. In this study, third-
and fourth-order statistics are used to identify noncausal AR
models. The additive noise therefore does not strongly affect the
performance of the method.

This paper is organized as follows. In Section 2 the notation and
model assumptions are presented. In Section 3 the proposed
family of techniques is derived, and in Section 4 some results are
presented. Finally, in Section 5 the paper is summarized.

2. MODEL ASSUMPTIONS
2.1 Signal Model

The noiseless discrete-time process y,(r) satisfies the following

stochastic difference equation
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where the a(i),i=—p, ..., ¢, are the model coefficients to be

estimated, y (#) is the output sequence, w(f) is the noise
sequence, and x(#) is a non-Gaussian, i.i.d. input sequence, with
zero mean, E{x(t)}=0, variance, O',zc = E{xz(t)} #0, non-
zero skewness, Y3, = E{x3(t)} #0, and non-zero kurtosis,

Yax =E{x* (0} -3E*{x*()} 20.

The system is assumed to be non-minimum phase and
exponentially stable with a transfer function given by
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From (3), the output sequence can also be expressed in the time
domain as

y()= THDA( i) @

where A(t) is the impulse response of the AR model.

The objective of this paper is to estimate the AR parameters
a(i), i=—p, .., q, based on estimates of the higher-order

cumulants of the noisy observation y(?) .

2.2 Preliminaries

Both 4™-order and 3™-order cumulants are exploited to estimate
the parameters of the non-causal AR system. For a zero-mean



stationary process {y(#)}, it can be shown [9] that the third

order and fourth order cumulants are given by
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Because for a Gaussian process, the kth -order cumulants vanish
for k23, the higher-order cumulants of y () and the noisy

y(t) are identical. The insensitivity of the cumulants to the
presence of additive colored Gaussian noise is an important
reason for employing cumulants, even for cases where the
autocorrelation sequence is sufficient.

3. AFAMILY OF ALGORITHMS
3.1 The Basic Idea

It is well-known [9] that the higher-order cumulants are not
affected by Gaussian noise whereas the 2™-order autocorrelation
estimates suffer from such noise. Since our approach for
identification of non-causal AR systems uses 3™- and 4™-order
cumulants, it is robust to additive Gaussian noise and more
robust than other techniques based on the autocorrelation
sequence, in the sense of signal-to-noise ratio (SNR). Our
simulation examples show that good identification is achieved
for low SNR cases. We, therefore, ignore the noise effects in our
derivations. Our starting point is equation (1) with y (¥)

replaced by y(1),1ie. y ()= y().

Multiplying both sides of (1) by y(r—k)y(x—0)y(t—m) and
taking the expected value, we obtain

q
Za(i)E{ Y=yt =k)y(t =D y(t—m)}

, @)
i==p
=E{x()y(t—k)y(t =)yt —m)}
Now, by defining 4, as
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the fundamental expression of our method can be shown to be
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This can be written in matrix form as

C4yka:lkC3ya (10)

where

a=[a(-p),a(-p+D,...a(g=D,a(@)]" .
Since the matrices are not square, the equation is multiplied by

C;r_v on the left-hand side to obtain

C},Cypa=4C5,C5,a (11)

It is obvious that the vector & is the generalized eigenvector
corresponding to the eigenvalue A . The cumulant matrices can
be directly estimated from output and eigenvector problem can
be solved uniquely. We obtain p+g+1 eigenvectors,
consequently, we have to choose which one among them
corresponds to the true solution. To do that, we generate
estimated input signals by using each eigenvector as an FIR
filter, and calculate the kurtosis values for each input signal
estimate. It has been shown [11] that the eigenvalue-eigenvector
pair that maximizes the kurtosis of these input estimates is the
best estimate of the AR model.

3.2 Using More Information

In fact, we do not know at the beginning which value of %
should be chosen. To overcome that problem, a set of k values
is employed to form the cumulant matrices in (11). We solve
(11) in each case and note the 4; in each solution. Now we may

form a large set of equations as
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For simplicity, this equation may be written as
C,a=Cja (13)
or equivalently

(C4-C3)a=0 (14)

By taking the SVD of (C,—Cj3) we choose as the solution,

the right singular vector with the smallest singular value (which
should be zero in the ideal case).

3.3 Gradient Approaches

Since Eq. (11) is a generalized non-symmetric eigenproblem,
there is always a chance of getting a complex eigenvalue-
eigenvector pair, which is not acceptable for the technique
presented in this paper. To overcome this handicap, we present
another solution technique based on minimizing a cost function
that guarantees that the solution to the AR model is always real.

From (11), we define the following error vector



& =(Capyr — 4Csy)a (15)

As a performance measure or cost function, we introduce the
squared error defined as follows:

Iy =l 1P=g" g, (16)

We now search for the vector a for which the squared error J is
minimum.
Substituting Eq. (15) into (16), we obtain
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To determine the optimum vector a, we differentiate the cost
function J; with respect to 4; and then set the result equal to

zZero.
Differentiating Eq. (17) with respect to A , we readily find that
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which can be solved for A; to obtain
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Due to the nature of our method, the cost function J; is a function
of both A, and a. Therefore, we wish to minimize J, with

respect to 4, and a simultaneously.

We seek the optimum solution a which satisfies all the k values
because we are getting different fourth-order cumulant matrices
C4y for each value of k. To do so, we define a new cost

function which considers a set of k values.

J= ZaTD L (a)a (20)
k

where D (a)=C; + 2B, — 4, (A; +A}). On the other hand,

74 1is also a function of the vector a as can be seen from (19).

Substituting (19) for 4, and differentiating (20) with respect to

a , we find
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We employ the method of steepest descent to find the optimum
vector & . According to this method, the adjustment applied to
the vector @ at iteration # is defined by

Aa(n) = -1V 4/ (n) (23)

where 7] is a positive step-size parameter. Given the old value

of @ at iteration n, the updated value of this & at the next
iteration n+1 is computed as

a(n+1)=a(n)+ Aa(n) 24
This iteration method is summarized as follows:
1. Assign an initial value to a.
2. Compute V,J(n) using (21) and (22).
3. Update a using (24).
4. Gotostep2if J(n)> p (some chosen tolerance).

In order to speed up the convergence and improve the likelihood
of reaching the global minimum of the error surface, instead of
choosing an arbitrary initial value for a, we select a rational
guess. To do that, we developed a technique from our simulation
experiences as follows:

1. Select a k and arange of 4, values.
2. Compute D;(4,) .
3. Find the eigenvalues and eigenvectors of D (4;) .

4. Assign the eigenvector corresponding to the smallest
eigenvalue to a .

5. Compute J; from (17) for each A .

6. Find all the minima of J,. From our experience, J; has more
than one minimum.

7.  Select the minimum that maximizes the output kurtosis as
the initial value of a .

4. RESULTS

To simulate our algorithm, we generated an i.i.d. exponentially
distributed random process with zero mean and finite cumulants
for the input, which we convolved with the true impulse
response. Zero mean, Gaussian noise (white and colored were
considered) were added to produce a signal-to-noise ratio of
10dB. Colored noise was generated by passing white Gaussian
noise through a first order AR filter with its pole at 0.95. To
reduce the realization dependency of our simulations, we
averaged over 20 Monte Carlo runs.



Example : The second-order noncausal model that we simulated
is

z)= 1
(1-0.82)(1+0.75z7Y)

with a causal pole at -0.75 and an anticausal pole at 1.25.

The results for N=1024 data points are below.

TRUE AR(2) [EST AR(2) COEFE., N=1024, SNR=10DB,
COFFF, 20 MONTE CARLO RUNS
WHITE COLORED
-0.6854 -0.6860 = 0.0383  -0.6944 T 0.0387
0.3427 03678 * 0.0903 03524 + 0.0534
0.6425 0.6196 * 0.0409 0.6232 + 0.0396

The table below is for N=4096.

TRUE AR(2) [EST AR(2) COEFF., N=4096, SNR=10DB,
COEFF, 20 MONTE CARLO RUNS
WHITE COLORED
-0.6854 -0.6868 T 0.0140  -0.6949 T 0.0397
0.3427 03562 * 0.0477 0.3378 * 0.0533
0.6425 0.6314 * 0.0236 0.6311 * 0.0295

5. CONCLUSIONS

We examined the problem of estimating the parameters of a
noncausal AR signal from estimates of the higher-order
cumulants of noisy observations. The family of techniques
presented herein uses both 3rd-order and 4th-order cumulants of
the observed data. Consequently, for additive Gaussian noise at
low SNR, they provide superior performance to methods based
on autocorrelations. The AR model parameters here are directly
related to the solution of a generalized eigenproblem.
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