BURST ERROR COMPENSATION FOR A TWO-DIMENSIONAL CHANNEL
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ABSTRACT

In an optical channel for a digital holographic data
storage system, burst errors, in the form of severe am-
plitude compression, are experienced in the vicinity
of dust and other optical aberrations in the channel.
The locations of these burst errors are approximately
fixed over a range of perturbations in magnification and
vertical-horizontal position. In a calibrated channel,
lower error rates can be realized by allocating energy
in the modulation code based on a measurement of the
approximate location of these effects. This paper dis-
cusses theoretical bounds on the energy inside the dis-
tortion region, and the modulation code which is used
to approach this bound.

1. SYSTEM DESCRIPTION

The digital holographic data storage system (DHDSS)
is similar in many ways to a communication channel,
with the data bits experiencing interference within a
page similar to the inter-symbol interference (ISI) seen
in a conventional communications channel. However,
the DHDSS experiences ISI in two dimensions, with a
spatial coordinate instead of a time coordinate. Addi-
tionally, the interference is not spatially causal.

1.1. Operation of the System

A block diagram of the holographic data storage system
is shown in figure 1. Polarization and other elements
are omitted from the picture for simplicity.

Storage of data in the medium is performed as fol-
lows: the beam from the laser source is split into two
separate beams. One beam is used to illuminate the
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Spatial Light Modulator (SLM), a 1024 x 1024 array
of pixels on which the image to be stored is formed.
The SLM is controlled by a host computer, which sets
the states of the pixels to “on” (1) or “off” (0). The
beam reflected from the SLM is focused into the storage
medium, where it interferes with the reference beam.
The interference of the beams creates fringes in the ma-
terial (here, LiNbOg3). The angle of the reference beam,
which is used for multiplexing the data, is controlled by
a movable mirror.

The data is later read from the medium as follows:
only the reference beam is present (the object beam is
blocked). If the reference beam is reflected at the same
angle as a page of stored data, the fringes reconstruct
the stored data, which appears at the charge-coupled
device (CCD) camera for recording,.
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Figure 1: Block Diagram of Digital Holographic Data
Storage System

1.2. Channel Characteristics

For the purposes of this study, the system is aligned
so that the object beam is centered on the SLM and
on the CCD, and the reference beam is approximately
uniform across its region of illumination.

The following types of channel perturbation and
noise are addressed with the coding:



¢ Optical aberrations on the system components
cause fixed “burst” errors in the image plane,
with the corresponding diffraction rings causing
compression in the gain of the pixel values. A
typical example of these rings is shown in figure
2. The localized amplitude change can be ap-
proximated by the main lobe of the first order,
circularly symmetrical Bessel function Jy(z,y).

e Fixed errors are caused by stuck pixels in the
SLM and/or the CCD. These spots can appear
as either bright or dark values. Stuck pixels are
also seen in figure 2 as a small, very dark region.

¢ Distortion is caused by the finite aperture of the
lens, resulting in a non-uniform focal surface in
the image plane. The result, in the alignment
used with this system, is a ring of distorted pix-
els near the inflection points of the Gaussian focal
surface shape. This distortion complicates sym-
bol detection.

¢ Background noise is caused by the non-zero re-
flectivity of the “off” pixels in the SLM, by stray
light from outside the system, and from scatter-
ing inside the system. The result is a noise floor
at approximately 5% of the maximum pixel value.
This noise is reasonably approximated by addi-
tive white Gaussian noise (AWGN).

.

Figure 2: Typical Diffraction Pattern Burst Error

Unlike the conventional communications channel,
the DHDSS channel cannot accurately be modeled as
AWGN since the effects of the burst errors and distor-
tion far outweigh the effects of the background noise.

1.3. Calibrated Channel

The precise amplitude compression in the burst errors
cannot be predicted deterministically in the channel;

instead, the burst error locations have some probability
distribution because of the small changes in the align-
ment that occur over time.

The storage crystal and optics are considered to be
a “fixed” system; i.e., the crystal will be used with
the optics without removing the crystal (like a hard
disk drive, where the platters are not removed from the
heads). In this case, the system can be calibrated for
the areas of highest distortion and other fixed phenom-
ena (e.g., aberrations in the optics). The information
from calibration is used to allocate the storage capacity
in the image plane, and all data are stored encoded for
this capacity distribution.

1.4. Admissible Modulation Codes

Since the most severe amplitude compression from the
diffraction rings of aberrations occurs for aberrations
close to the SLM and CCD, and since the “main lobe”
of the rings measures approximately 40 to 60 pixels
in diameter, a diffraction ring main lobe measuring 49
pixels in diameter is considered for analysis. Call this
circular region R.

For synchronization of the detector, the symbols are
pixel run-length limited (RLL) to four off pixels. Near
the center of R, low-energy codes that are RLL to 1 on
pixel work well for reducing ISI. Near the edges (out-
side half the region radius), 2-3 on pixels are required
to produce enough energy after the point-spread func-
tion (PSF) and the intensity attenuation so that the
pixel values do not drop below the noise floor. These
restrictions have been found by experimentation to fa-
cilitate acceptable performance in the detector. Call
the class of all such modulation codes C.

In R, the maximum energy after modulation coding
could be bound by the signal which uses the “all-one”
signal, Z. However, this bound is not reasonable since
Z contains no information. On the other hand, it can
be shown by exhaustive search that more than 99.8% of
the members of C correspond to non-negative trigono-
metric polynomials, as described below. A similar re-
sult holds for main lobes of different diameters. Thus,
a better energy bound for C is found by analyzing these
non-negative trigonometric polynomials.

2. BOUNDING THE POWER

The total image plane signals considered in this paper
may be thought of as deriving from the uniform, 1024 x
1024, square lattice sampling of light intensity fields.
They are therefore discrete, two-dimensional, spatial
signals. Assume that the diameter of the circular region
R is 2N +1. Let A be the set of two-dimensional indices
over R, such that the (0, 0) point is at the center of R.



Denote by I(ni1,n2) the amplitude signal on R. Then
I(n1,n2) can be represented in matrix form as

Z B(ny,ne)r(ng,ng)dé(n,na)

(n1,m2)€A

I(nl,ng) =

where n; is the row index, ns is the column index,
6(n1,n2) is the unit sample, r(n1,n2) > 0 for all ny
and ns, and B(ni,n2) represents the amplitude com-
pression function. Note that B(ni,0) = Jo(n1) where
Jo(z) is the first order Bessel function scaled so that
Jo(—N) = Jo(N) =~ 0. The energy stored in [ is
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EI = Z B(nl,n2)2r(n1,n2)2
(n1,m2)€A

Recall that a function T which can be represented

as
Mo

T(z) = Z a(k) sin(kz) + b(k) cos(kx)
k=M

is called a trigonometric polynomial. Let

Jo (23 o<k<nluqo
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and let S represent the set of all nonnegative, trigono-
metric polynomials of the form

Coef =

N
= Z )sin(kz) + b(k) cos(kx)

where a(k),b(k) € Coef. In this section, a bound on
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is approximated. The reason for considering such a
bound was discussed in the previous section, as was the
choice of N = 24. A related problem was addressed by
Brown et al. in [1] where they found that

In = z)dz : Q(z) € Sn

|
l\JI'—‘ I—M

2m
sup %/Q%x)dx :Q(z) € Py
0

€[(N+1)Ci,(N+1)Cy +1]

where Py represents the set of all nonnegative, trigono-
metric polynomials of degree less than or equal to N.

An algorithm for calculating C; = 0.686981293. .. was
given by Garsia et al. in [2]. This result implies that

17 (24+1)C1 < Ly < (24+1)C1 +1~ 18

however a simple calculation shows that

N
1
Ly <1+ I;QJO(O.lk)Q <119 .

This implies that Sa4 is a relatively low energy subset of
Po4. A nonexhaustive computer search for high energy
members of S94 was performed in order to judge the
tightness of 11.9 as a bound for this one-dimensional
slice through R. This search produced the following
member of Sa4:

24
w(z) =1+ Y Jo(0.1k) cos[(k — 3)a]
k=4

The (one-sided, or cosine-only) L2 norm of w is ap-
proximately 4.98. (There are no units on the energy,
since it is a function of pixel value.) This is approx-
imately 48% of the maximum possible energy for any
member of Sy4. However, the high degree of w leads
one to suspect that 11.9 is not a tight bound for Io4.

Now consider the whole of R, rather than the one-
dimensional slices. Then the maximum energy possi-
ble for Z is 22.1. The maximum-energy, non-negative
trigonometric polynomial w was used to generate a two-
dimensional function ws, which has energy 17.8. The
maximum energy for a member of C, found by exhaus-
tive search, is 16.3. However, the bound on ws found
by nonexhaustive search and analytical methods is only
9% higher, making this bound useful and more compu-
tationally tractable.

3. ENERGY DISTRIBUTION

When the channel is calibrated, the modulation codes
can be adjusted in the vicinity of burst errors to op-
erate with an energy distribution more suited to the
amplitude compression.

Reed-Solomon codes are used by Chiarulli ef. al.
[3] in holographic memories. However, in this partic-
ular system, because of the large amount of distortion
experienced, some type of modulation coding is needed
to assist detection. Reed-Solomon codes are generally
used for correcting burst errors, where the burst is con-
strained to only a few Reed-Solomon symbols (a collec-
tion of several bits, not to be confused with the mod-
ulation code symbols in this system). By the nature
of the Reed-Solomon code, its performance tends to be
superior only when the interleaving tends to group bit



errors together so that several occur within the same
Reed-Solomon symbol, and are not spread uniformly
over the Reed-Solomon symbols in a single word.

The modulation codes chosen from the system were
restricted to 2 X 2 symbols for compatibility with pre-
vious research, and because an integral number of 2 x 2
symbols can be fit into the image plane. Low-energy
modulation codes perform well for detection in this sys-
tem over most of the image plane (this work is currently
being summarized for publication). Two of the codes
analyzed in the work included the symbols shown in fig-
ure 3. Call the top-row symbol set ¥} and the bottom-
row symbol set V5.

Figure 3: Modulation Code Symbols

However, the performance of low-energy modula-
tion codes in R is poor because of the amplitude com-
pression: near the edges of R, the attenuation from the
PSF, coupled with the amplitude compression, pushes
isolated “one” pixels below the noise floor. The trade-
off for locating effective modulation codes is that the
higher the energy of the symbol, the higher the level of
ISI resulting from the symbol.

A modulation code from C is generated when the
top row from figure 3 is used inside the center half-
radius (R1), and when the second row is used for the
outer half-radius (R2). Call this code v. (Exclusive-or
with a PN sequence may be required to ensure that the
RLL restrictions are met.) This code offers an energy
of 14.9, which is 91% of the C bound. It is not certain
if the bound can actually be achieved, since the energy
bounds found in the previous section do not necessarily
correspond to 2 x 2 pixel symbols in a rate-1/2 modu-
lation code.

The modulation codes are used in conjunction with
conventional channel coding, such as algebraic or con-
volutional codes. The raw symbol error rate (RSER)
will not be zero because of distortion and local errors.
However, with intelligent interleaving, tandem coding,
and an RSER less than about 10~3, the composite sym-
bol error rate can reach zero.

In a typical run of the detector, V; experiences an
RSER of 1073 in R, with all of the errors in Ry. The
set V, experiences an RSER of approximately 3 x 1072
overall, with better performance than V; in Ro. The

combined performance of v is approximately 5 x 10~*
over R. Because v does not depend on the use of an
accurate inverse of the amplitude attenuation, shifts in
the position of R in the image plane have only a small
effect, if any, on the resulting RSER.

4. CONCLUSIONS

The maximum energies are summarized in table 1. It
can be seen that the energy bound, as found by analy-
sis of non-negative trigonometric polynomials, is much
tighter than the coarse bound found from Z. It is in-
teresting to note that the bound given on we without
the restriction to C is only 9% higher than the bound
found by exhaustive search, while the coarse bound is
36% higher.

The v modulation code achieves 91% of the bound
energy. As discussed above, v performs better than the
higher energy code obtained by using only Vs, since V5
does not correspond to a member of C.

Table 1: Summary of Signal Energies

Signal Maximum Energy
VA 22.1
W9 17.8
sup{Er: [ € C} 16.3
v 14.9

Finally, since the members of C correspond 99.8%
to non-negative trigonometric polynomials, the theory
developed in this paper can be used to select a modula-
tion code from C and to judge its effectiveness by con-
sidering its energy. This measure must be used since
not all elements of C necessarily correspond to modula-
tion codes, and exhaustive search of C for the “optimal”
modulation code is computationally intractable.
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