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ABSTRACT

In this paper we address the problem of the separation and recov-
ery of convolutively mixed autoregressive processes in a Bayesian
framework. Solving this problem requires the ability to solve inte-
gration and/or optimization problems of complicated posterior dis-
tributions. We thus propose efficient stochastic algorithms based
on Markov chain Monte Carlo (MCMC) methods. We present
three algorithms. The first one is a classical Gibbs sampler that
generates samples from the posterior distribution. The two other
algorithms are stochastic optimization algorithms that allow to op-
timize either the marginal distribution of the sources, or the marginal
distribution of the parameters of the sources and mixing filters,
conditional upon the observation. Simulations are presented.

1 INTRODUCTION

The paper is organized as follows. In Section 2 we present the
model for the data. In Section 3 we propose a Bayesian model to
solve the problem. In Section 4 we propose a MCMC algorithm
that allows us to obtain samples from the posterior distribution.
Section 5 is devoted to two optimization algorithms that estimate
two MMAP: the MAP of the marginal posterior distributions of
the sources conditional upon the observations, and the posterior
distribution of the parameters conditional upon the observations,
that is in the later case that the sources are integrated out. In Sec-
tion 6 we present simulation results and in Section 7 we draw some
conclusions and discuss our contributions.

2 MODEL OF THE DATA AND OBJECTIVES

The problem addressed is the problem of source separation, the n
sources being modelled as autoregressive processes.

2.1 Model for the sources

Source ¢ is modelled for¢ = 1,...,T as:
st = alysi) i, Howel” M

. . . T 1
where sff:;, = ( si? sl(:) ) ag & aﬁ;(i) and ;)

is the length of the it* AR model. We assume that s(()i> ) Ol(i) x1

fore=1,...,n. (ey)) is a zero mean normalized i.i.d.

t=1,...,T
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Gaussian sequence, i.e. fori =1,...,nandt =1,...,T, e§i> ~
N(0,1). (a?i>) are the variances of the dynamic noise

for each source. Further on we will denote 'U,Si) = a(i>e§i> and

we assume that the excitations of the different dynamic noises are
independent.

i=1,...,m

2.2 Mixing noisy model

The mixing model is assumed to be a multidimensional time in-
variant FIR filter. More precisely we assume that the sources are
mixed and corrupted by an additive Gaussian i.i.d. noise sequence:

at the jth sensor, and forj =1,...,m
n
Gy — T (3) . )
v = Zh(id)st?t—L(i’j)J,_l +o{jeyr 2)

i=1
where L; ;y is the length of the filter from source ¢ to sensor

: <i>)
J- (Et t=1,...,

quence, i.e. fori =1,...,mandt =1,...,T, 5§i> ~ N(0,1).
((7(22-”3)2,= L., are the variance of the observation noise for each

is a zero mean normalized i.i.d. Gaussian se-

sensor. They are assumed independent of the excitations of the
AR models. Note that we assume h{"7? = 1.

2.3 State-space representation of the data

In order to design efficient algorithms we will see in Section 4 that
it is important to rewrite the model of the data using a state space
represention:

(#) — (#) (#)
Sirt-ay+1 = A@Si 1, T Bwe: 3

where A(;) = max{l(i>,max {L(i,ﬂ}}. Ay and By, are de-
J

fined as:
T
A, A | ED Oix(niy 1)
@ =11 ]
Ayt (A @iy -1)x1 »
T
B é[ o6 Oy -1)x1 ]
Then defining
A%diag[ A Ay ] )
B £ diag [ By B(m ]



one can write the evolution equation:

51 = AS{IY + Bel'™ (6)
The observation equation takes the following form:

yi'™ = Cs{'™ + Def™ (7)
where C is equal to

hl{l,l) 01><(>\1—L1,1) hl{ﬂ,l) 01><(>\1—Ln,1)

hmy 01 x(An=L1,m) hip,m) 01 x(An=Lnm)

8
and
~(L:in) A 1t RN (n)t '
S, = ( St:t—A(1)+1 St:t_x(")‘*'l ) (9)
A . * *
D 2diag[ oy Ofm ]

2.4 Objectives

Our aim is, given the number of sources 7, 1¢1.,y and L1, 1:m)

to estimate the parameters a(;.,y and the sequences V§1Tn> from

the observations y§:17:1m>. To achieve this, we adopt in this paper a

Bayesian approach.

3 BAYESIAN MODEL

In a Bayesian framework, priors are needed for all the parameters
of the model. We assume the following probabilistic structure of
the g priori density of the parameters. We note

0 £ {a(l:n)yh(l:n,l:m)y0'(21:n)70'(2f:m)} (10)
then
n m
2 2 2% 2%
p(0) =]]r(awlo)p(ofs) [Ip (huplofs) p(o3)
i=1 j=1
(11

that is we introduce independence among the sources and among
the mixing filters. We now describe the different prior distributions
of the parameters of the model.

3.1 Priors for (agy,07,)

We assume thatfor¢e =1,...,n

(i) (i)
2 v Vi
oy ~IG | 5 5 )

(12)
oly ~ N (0’<i>X17”(2i>°‘<i>I’<i>)

al®

where ZG is the inverted-gamma distribution [3] and oy > 0.
Note that as ué”, fy(()i> — 0 one obtains Jeffreys’ uninformative
prior. The prior on a® becomes uninformative as agy — +oo.
Note however that if I;;y is unknown, one should avoid such an

improper prior that might lead to Lindley’s paradox [3].

3.2 Priorsfor (hy; jy,075)

We assume thatforj =1,...,mand¢=1,...,n

o DRI
oy ~IG | 5= 55—

(13)
hii | ol ~ N (OL(i,j)><170'(2i*)16(i,j>IL(i,j))

where 8¢; ;y > 0. The remarks given in the preceding subsection

concerning the hyperparameters of the model apply here. This

allows us to define a uninformative prior distribution for these pa-

rameters.

3.3 Bayesian objectives

In a Bayesian framework our aim will be to estimate the following
posterior distribution:

yii) ocp (v 6,605 ) » (6,8857)

Neither this distribution, nor features such as the MAP estimate
of the sources or the MMSE estimate of the parameters can be ob-
tained in closed-form. This is why numerical methods are required
either to optimize or integrate. Note that the use of reversible jump
MCMC algorithms introduced in [6] could allow us to treat the
case when the dimensions of the AR models and of the mixing
filters are unknown.

4 MCMC ALGORITHM
MCMC methods consists of running an ergodic Markov chain (MC)

1:
p ( 07 S§:Tn>

(x(i)) ~admitting as equilibrium distribution 7 (-) the arequired
distribuzggn, the posterior distribution of the parameters of the mo-
del in a Bayesian framework. The samples obtained from the er-
godic MC allow us to estimate, when they exist, quantities such as
J f (x) 7 (x) dx by ergodic averaging. We will illustrate in Sec-
tion 5 that they also allows us to design optimization algorithms
to find the maxima of m (-). We now describe a Gibbs sampler

algorithm that generates an ergodic MC (O(i) , sgq:wn)(i)) with

yitm).

i€EN

asymptotic distribution p ( 9, s§1Tn>
4.1 Algorithm

In this section we present a Gibbs sampler that allows us to asymp-
totically obtain samples from the posterior distribution

p (0,50 |y ).

Homogeneous algorithm

1. Initialization set 8 to a random value.
2. lteration ¢
e Sample the dynamic noise v{.™® and the vari-
ances of the corresponding Gaussian noises:

{L:n)

il G—1)2% _(i—1) _(i=1)2 _ {1:m)

n{i—" a
(1:n,1:m)7a.(1:m) ’ (1:T)7a.(1:n) » Y11
(15)

o Fork =1,...,n evaluate s{¥)™ from (3).

e Fork =1,...,n sample the variances of the dy-
namic noises o7, | s{2.

e Fork = 1,...,n sample the coefficients of the
autoregressive models: ay, | (ang,sﬁ;@).



G
e Fork=1,...,nevaluate s§:%(2) from (3).

o Fork=1,...,msimulate o7}, (yﬁ%,syf%(i))(see
(20)).
e Fork=1,...,msimulate
ﬂ<k>| (v, 0357, s @) (see 22)).
3.6¢1¢+1.
4. Goto 2.
|

By construction the transition kernel defined by one iteration

of the algorithm admits p ( 9, S§1Tn> | yﬁ}m)

) as invariant distri-
bution. One can easily check that this MC is irreducible and ape-
riodic, and thus converges towards the required posterior distribu-
tion [7].

4.2 Implementation

42.1 Sampling v{1:™

This is done by performing the efficient Kalman disturbance smoother

described in [4], which uses the the state-space representation in-
troduced in subsection 2.3.

422 Sampling o7,
Classic algebraic manipulations lead to

i+

. vin+T P,
oly sl ~Ig | =, @ (16)
where ||x||3 £ x"Ax and
A _
Py = Ir — 8,580 an

a1l a -1
Sy =88y +agy L,

and S(k> is the Toeplitz matrix with first column sg.7—1 and first
line s¢:1—; ) It is easy to obtain samples from this distribution
using standard techniques [5].

4.2.3 Sampling a(x)

Directly from Bayes’ theorem one can find that:

2 k 1: 2

a| (o8, st ™) ~ N (mey,0fyMgp)  (8)

with )
AT T
my;) = 8(;) Syt (19

4.2.4 Sampling the variance of the observation noise
Similarly
2

76 vt st

, * (k) p*
* k k T+v,
o5 (v sy g (g P e

(20)
where
* A o
Gy = Ir — R Ry Ry

=1 a : 1 2D
Ry = R{;Ry;) + diag (la(i,j)IL(i,J'))

where R.(;) is composed of the Toeplitz matrices with first column
xo.7—1 and first line X0:-Lyjy aligned from the left to the right.

4.2.5 Sampling hy; ;
For a given j one easily obtains
hingy ~ N (“’(j)?R(J'))
ni) 2 RpRe (v -s))
5 OPTIMIZATION ALGORITHMS

(22)

In this section we first present an algorithm to optimize p (0| y§:1}m>

which is a stochastic version of the algorithm presented in [9].
Then we show how it is possible to integrate the nuisance parame-
ters out, here the mixing filters and the variance of the observation
noise and of the dynamic noises to obtain an analytic expression

of p ({7 | yi™

this expression to design an efficient stochastic optimisation algo-
rithm that allows us to obtain the MMAP (Marginal Maximum A

.. . 1:
Posteriori) estimate of s§: N 3
5.1 First algorithm

) up to a normalizing constant. Then we use

We consider an increasing positive sequence (7;), .y, then we can
define the following optimization algorithm:
_ Simulated annealing algorithm
1. Initialization set 8® to a random value.
Iteration ¢
. . 1: R
2. Sample the dynamic noise v§:Tn>(*).
(1:n) (i-1) (i-D2« _(i-1) _(i-1)2 _(1:m)
l:Tn (h(zl:n,l:m)7 (Zlm) ’ a(ZI:T) ’ a.(zln) ’ yl:Tm )
(23)
3. Evaluate s{!¥.
Sample 8%, as in subsection 4.1.
4. Optimization step:
o Evaluate
€[ {1m) vi—1
(O J— (8@ ]y{i™)
Gsa =mil {1’ (p(emu-n W)
(24)
o If (u~Up) <alf)thend® « g0 gl @
S(l:n)(*)
1T ) )
else O  gli-1 {lm) L Glim)(i-1)
EndlIf
5.1+ 1
6. Goto 2.
n

5.2 Integration of the parameters of the model

then one integrate a(lm>,a'%1m> out, that is obtain an analytical

expression of p (s?; Nyllm

) up to a normalizing constant.

(Lim) | o (1:m) & 13 [ L Gt ]
mn m 5 T T T
p(SI:T Yi.T )CxH?:llS(i)l2 [’Yo +SI:TP(2')SI:T]
_(T+u3)
— 1 wli . . 2

XTIy R |26 + || (v s ) ..

(7)

(25)

The interpretation of this cost function is rather simple: the first
term says how the sources fit the autoregressive model and the
second term tells us how the sources fit the observed data.



5.3 Second algorithm

We present here an efficient stochastic algorithm that allows to op-

timise the probability density p (s?; ) | y§:17:«m>), in other words
to find the most probable sources. This algorithm uses the nui-
sance parameters in order to perform easy/efficient simulation of
the parameters S§1Tn> .

_ Simulated annealing algorithm

1. Initialization set 8¢ to a random value.
Iteration

2. Sample the dynamic noise v{1;™®):
(L:n) (i-1) (i-D)2« _(i—-1) _(i-1)2 _(1:m)
l:Tn (h(zl:n,l:m)7a.(21:m) 7a(21:T)7a.(21:n) ’ l:Tm
(26)
3. Evaluates{!™®),
4. Optimization step:
e Evaluate
m)(* m i—1
oy = min {1, (2GR Y’
54 QCCEERMTD)
@n

o |f (u ~ U(o,l)) < agL then
Sample 6™, as in subsection 4.1. 8% « 9™,
0
else )  @Ui=1 Lm@) o (Lmi(i=1)
Endlf
5.9+ ¢+ 1.
6. Goto2.

6 SIMULATION RESULTS

We considered in simulation the case n = m = 2, l(;y = 5 and
L;;y = 10 with noises equal to o(;y = .1 and 0(22-*) = 1.0 for
i, J = 1,2 and 500 observations. We used the second optimization
scheme for 500 iterations and a linear cooling schedule. On Fig. 1
we present the original spectra, and the recovered spectra. On Fig
2 we present the correlation of the real sources, the observation
and the outputs of our algorithm.
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Figure 1: Spectra of the real sources, and recovered sources

7 CONCLUSION

In this paper we have introduced a Bayesian model to address the
problem of separation and recovery of convolutively mixed autore-
gressive sources, corrupted by an additive white Gaussian noise.
We present three stochastic algorithms, relying on MCMC tech-
niques, that allow us to obtain samples from the posterior distribu-
tion of the model, and we show how they can be used to optimize

Figure 2: Correlation of the orginal sources, the observations and
recovered sources

the posterior distribution of the sources conditional upon the ob-
servations or to optimize the set of parameters of the model con-
ditional upon the observations, the sources being integrated out.
Simulation results showed that in general source separation can be
achieved in very general cases, as suggested in [9]. The main in-
terest of our approach is that it will allow us to take into account
more complex and reliable model for speech, such as autoregres-
sive processes excited by impulsive noise, and to estimate all the
unknown parameters, without any ad hoc tuning. Furthermore the
number of sources can be more than the number of sensors. Note
that the approach we developed also allows to address the problem
of model selection of the order of the mixing filters and autore-
gressive processes.
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