
MINIMUM INITIATION INTERVAL OF MULTI-MODULE RECURRENT SIGNAL
PROCESSING ALGORITHM REALIZATION WITH FIXED COMMUNICATION DELAY

Hung-ying Tyan

Electrical Engineering Department,

Ohio State University,

Columbus. OH

ABSTRACT

A novel iterative algorithm is proposed to compute the the-
oretical minimum initiation interval of a given recurrent
algorithm when there is a known, fixed inter-module com-
munication delay. Specifically, for a twin-module implemen-
tation problem, a novel representation called necessary ini-
tiation interval is introduced to faciliate the development of
an iterative algorithm which yields both the minimum initi-
ation interval and the corresponding cut set of the cyclic it-
erative computational dependence graph (ICDG). The con-
vergence of this iterative algorithm in finite iterations is also
proved.

1. INTRODUCTION

A simple example of a recurrent algorithm is an infinite
impulse response (IIR) digital filter:

y(n) = a * y(n - 1) + b * u(n) (1)

where y(n) is the output and u(n) is the input. The compu-
tation of y(n) can not be commenced until the completion
of the previous iteration where y(n - 1) is computed. In
other words, the nth iteration depends on the (n - l)‘h it-
eration. The time duration between the beginning of the
execution of the nth iteration and that of the (n + l)‘h
iteration is called the initiation interval. Due to the inter-
iteration dependence relation, the minimum initiation in-
terval gives an upper bound of the throughput attainable
on a multi-processor implementation of the recurrent algo-
rithm assuming negligeble inter-processor communication
delay. Hence, deriving the minimum initiation interval is a
crucial first step for the multi-module implementation of a
recurrent DSP algorithm.

In this paper, we consider a multi-module realization
of recurrent algorithms with fixed inter-module communi-
cation delay. A module may refer to an IC chip or other
physical packages such as multi-chip modules (MCM). Each
module may contain one or more processing elements (PE).
PEs within the same module have dedicated communication
links with negligible delay. However, due to limited num-
ber of input/output links of each module, communications
across module boundaries will incur a fixed communication
delay which can not be ignored.

Yu Hen Hu

Dept. of Electrical and Computer Engineering,

University of Wisconsin,

Madison, WI 53706-1691,

hu@engr.wisc.edu

A C w task A a*y(n-1)

ta.skC b*u(n)

I
B task B Add results of tasks A&C

Figure 1: An ICDG example.

As shown in Fig. 1, a recurrent DSP algorithm can be
graphically represented by a directed graph, called itera-
tive computing dependence graph (ICDG), G = (N, E). N
is the set of nodes corresponding to the operations in the
algorithm and is represented in the ICDG with associated
computation time. E is the set of directed edges indicating
data dependence between two operations. We define rc as
the cycle computing time which equals to the sum of all the
node computing time in a cycle C. We also define AC (2 1)
to be the total dependence distance of a cycle C, which is
the sum of the delay elements on all edges of that cycle.
The minimum initiation interval, denoted by I,,,(G), then
can be computed as:

kwz(G) = ynG g (2)

In [3], a realizability criterion is proposed to determine if a
multi-processor realization of a given recurrent algorithm is
feasible with a specific initiation interval. In [l], a number
of algorithm transformation techniques are given to derive
the desired multi-processor realization. In [4], an efficient
realization method is proposed. In these previous results,
it is assumed that inter-processor communication delay is
negligible.

2. TWO-MODULE IMPLEMENTATION PROBLEM

To take into account the inter-module communication delay,
the ICDG must be modified to reflect how the tasks are
partitioned into different modules. The set of edges which
correspond to inter-module communication forms a cut set.
A delay node will be inserted to each edge in this cut set so
that the delay incurred on these edges is treated as if they
were extra computing nodes while calculating the minimum
initiation interval. In other words, the minimum initiation
interval now is determined by both the original recurrent

algorithm (ICDG) and the way the ICDG is partitioned
into different modules.

In this paper, we consider only the case of two-module
partitioning (ie. M = 2). Work is underway to consider
more general cases. The process of assigning computation
nodes in the ICDG to two modules is equivalent to that
of finding a cut set which bisects the ICDG into two sub-
graphs. The minimum initiation interval can be computed
for this particular cut set. The objective of the two-module
implementation problem then is to find the optimal cut set
such that the corresponding minimum initiation interval is
minimum among that of all possible cut sets. We note
that an m-module implementation problem has been in-
vestigated preliminarily in [5].

Taking this cut set into account, we consider a general-
ized ICDG G’(N, E, I<) where h’ is the set of edges which
forms the cut set. Let us denote G’ to be the ICDG trans-
formed from G by replacing each edge e E K with a branch
of the same source and destination and a delay node which
models the inter-module communication delay. Once this
transformation is done, the resulting ICDG, G’, can be ana-
lyzed as if there were no inter-module communication delay
as long as tasks assigned to the same module stay within
the same module. Therefore, based on Eq. (2), the min-
imum initiation interval corresponding to a particular cut
set I(can be found as:

Z(Zl-) =
TC

VT,““,, ac’

= max
TC + le E C n ICI. H

VCEG AC
(3)

Where]e E COZi] is the number of edges in the intersection
C n ZC, and, by definition, 101 = 0. With these notations,
we are ready to formulate the two-module implementation
problem:

Problem 1. Given a ICDG G = (N, E) and a constant
inter-module communication delay H. Denote K to be the
set of all possible cut sets which can be imposed on G. Find
an optimal cut set I<* such that

The next lemma states that for each cycle C, there are at
least a pair of edges which attend the minimum I,:

Lemma 2 For VC E G and Ve E C, there exists another
edge e’ E C such that I,, 5 I,.

It-” = arg vx~rl I(I<)
Consequently, let

Before proceed further, let us comment that since the
minimum initiation interval is defined on directed cycles in
the ICDG, any cut set which does not break any cycle will
not atfect the minimum initiation interval regardless the
communication delay H. Hence in this paper, we shall focus
on the partition of tightly coupled ICDG where every edge
is part of a cycle. In the following three lemma, we will
show that if G is not a tightly coupled ICDG, then there
exists an optimal two-module partition of G such that the
resulting minimum initiation interval will not be affected
by the inter-module communication delay.

Then, there exists an e’ E C and e’ # e* such that I,, = I,. .
Or, equivalently,

3.1. Simple Cut Set

Due to space limitations, in the following development,
proofs of lemma and theorems are omitted. They can be
found in an accompanying full paper in preparation [a].

A cut set I< E K is a simple cut set if and only if for any
cycle C E G, C n K # 0, IZt’n Cl = 2. If I< is a simple cut
set, according to Eq. (3),

3. NECESSARY INITIATION INTERVAL where

Let us denote K, = {ZCle E Zi,Z(E K} to be the set of
cut sets each of which contains a particular edge e. The is the minimum initiation interval without any partitioning.

necessary initiation interval of edge e E E is defined as :

Thus, I, is the smallest initiation interval of all cut sets
which contain a specific edge e. Similarly, denote K:c =
{ZClC II K # 0, I< 6 ZC} to be the set of cut sets which
intersect with a particular cycle C. The necessary initiation
interval of cycle C E G is defined as :

Ic = ,lnpc I(Ii)

Z, is the smallest initiation interval of all cut sets which
break a specific cycle C. From these definitions, it is easy
to show that for VK E K,

With either I, or Zc, the
problem 1 can be obtained

I,,,(H) = min I,
V&G

Z(ZC) 1 max ZC
vcnKf0

minimum initiation interval in
by

or I,,,(H) = vyCnGZc (4)

The relations between Z, and Zc are summaried in the
lemma below:

Lemma 1

Ic = min I,
eEC

e* = arg rn$Z(e)

(7)

Z(K) = vnlFG

I,,,(O) = max C
VCEG AC

Lemma 3

Z, 2 max

ZC > max

Theorem 1 If I< is a simple cut set, then

Z(ZC) = max I,
VeEK

3.2. Single-Node Cut Set

A single node cut set is a cut set which separates a spe-
cific node from the remaining nodes of the graph. More
importantly, a single node cut set is a also simple cut set.

The following theorem states that to find optimal two-
chip partition, we need to consider only simple cut sets.

Theorem 2 For any edge e E G, there exists a simple cut
set, say ZC,, such that I, = Z(Ke). Similarly, for any cycle
C E G, there exists a simple cut set, say Zic, such that
zc = Z(Zic).

3.3. The Iterative Algorithm

As described in previous sections, computing I, becomes
the main task to solve our problem, as well as to reduce the
size of the multi-chip implementation problem. However, it
is still not efficient to compute I, by its definition. Instead,
we propose an efficient iterative algorithm to compute I,.
The method is based on the recursive relation between I,
and Zc, which are described in eqs. (5) and (7).

If we can find a good set of initial values for either Ze’s
or Ic’s, then we can use Eq. (5) and (7) as the iterative for-
mulas to update Ze’s and ZC’S until they converge. Lemma 3
gives a good set of initial values for the iterative algorithm
below.

Theorem 3 The Iterative Algorithm - Let

w+2H
ic(0) = max{-,

AC
max z}, VC E G (9)

VC’EG A,)

i,(O) = 0, Ve E G

and the iterative formulas

qt+ 1) = v~;~Ci~(t), VC E G

ic(t+ 1) = vemjflccmax{i,,(t + l), ie2(t + 1)}(12)
Ia

Then for some 1 2 ti < co, and t > ti

ie(t) = L(tl) Ve E G (13)

w(t) = w(h) VC E G (14)

The convergence criterion is either it(t) = ic(t - l), for
VC E G, or ie(t) = i,(t - l), for Ve E G. Furthermore,

I, = h(h), Ve E G (15)

IC = e(h), VC E G (16)

Outline of Proof: The proof is divided into four steps. Let
ze(oo) and rc(oo) be the convergent values of z=(t) and it(t),

we will prove

A

2

B-E

I 0 1

c‘c,

D

Figure 2: The ICDG in example 1.

Figure 3: The list of computation for example 1.

1. ie(t) and ;c(t) are non-decreasing in t.

2. The number of iterations for ie(t) and it(t) to con-
verge is finite (i.e., tl exists).

3. I, 2 G(t), Zc 2 it(t) for all t. The result will be
used in step four.

4. I, = i,(co),Ve E G, ZC = ic(m),VC E G.

The detailed proof can be found in [?I.

The complexity of the iterative algorithm is O(the number
of iterations X(I E I + I C I)) of operations of finding
extreme values in a partial set, where I C I is the number
of cycles.

4. TWO EXAMPLES

In this section, two examples are given to observe the con-
vergence of the iterative algorithm.

Example 1 The graph on the left-hand side of Fig. 2 shows
the ICDG demonstrated in this example. The graph on the
right-hand side of the figure labels the edges in the ICDG.
In Fig. 3, we list all the computation up to the convergence
and indicate two cases of computations, I,, (1) and Ic, (l),
for better understanding. To focus on how. the graph struc-
ture affects the changes of i, and ic values, we suppose that

Figure 4: Example 2

of # of # of # of
Example nodes edges cycles iter.

40th orthogonal filter 473 590 757 2
48th Gray-Markel filter 289 424 1176 3
32th LMS filter 129 247 48 2
42th normalized filter 337 461 871 2

Table 1: Experimental results.

H is large enough such that maXVCEG y, the initia-
tion interval in single-chip implementation, doesn’t involve
through the computation. The first column is the edge (cy-
cle) list. The second column lists all the cycles (edges) con-
tains (constructs) the edge (cycle). The remaining columns
are the results of the iterations. In this example, it takes
two iterations to converge.

Example 2 Figure 4 shows the ICDG of this example. In
this example, we use several H values and observe the num-
ber of iterations needed to converge. The result shows the
iterative algorithm is not sensitive to the change of H.

5. EXPERIMENTAL RESULTS

The iterative algorithm has been implemented for exper-
imenting its convergence behavior and sensitivity to the
change of H. Four higher order filters from [4] are tested
in our experiments. We change H from 1 to 1000 non-
uniformly for each benchmark and the result shows that
the number of iterations to converge does not change with
H in all the benchmarks tested. In additions, the iterative
algorithm is shown very efficient in terms of the number of
iterations to converge. For a large algorithm such as 48th
Gray-Markel filter having 289 nodes, 424 edges and 1176
cycles, the number of iterations to converge is as low as
three. The results are summarized in the table below:

6. DISCUSSION

We have proposed an efficient iterative algorithm to com-
pute the necessary initiation interval of edges, lets. Af-
ter Ze’s are computed, the minimum initiation interval of

two-chip assignment is obtained with ease. The minimum
initiation interval of two-chip assignment serves a base of
whether the DSP algorithm can be implemented in a multi-
chip fashion. In additions, we can locate disqualified edges
and prune them away before proceeding some m-chip as-
signment procedure. In such a way, the size of the resulting
graph may be reduced significantly.

PI

PI

131

[41

[51

7. REFERENCES

K. K. Parhi. Algorithm transformation techniques for
concurrent processors. Proc. IEEE, 77:1879-1895, 1989.

Hung-Yin Tyan and Yu Hen Hu. Minimum initiation in-
terval of multi-module implementation of recurrent sig-
nal processing algorithm with fixed communication de-
lay. IEEE Trans. on VLSI Systems, 1998 (submitted).

Duen-Jeng Wang and Yu Hen Hu. Fully static multi-
processor array realizability criteria for real-time recur-
rent dsp applications. IEEE Trans. Signal Processing,
42: 1288-1292, May 1994.

Duen-Jeng Wang and Yu Hen Hu. Multiprocessor im-
plementation of real-time dsp algorithms. IEEE Trans.
on VLSI Systems, 3(3):393-403, September 1995.

Duen-Jeng Wang and Yu Hen Hu. Synthesis of real-time
recursive dsp algorithms using multiple chips. Proc.
Great Lake Symposium on VLSI, pages 8-13, April
1996.

