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ABSTRACT 

A novel iterative algorithm is proposed to compute the the- 
oretical minimum initiation interval of a given recurrent 
algorithm when there is a known, fixed inter-module com- 
munication delay. Specifically, for a twin-module implemen- 
tation problem, a novel representation called necessary ini- 
tiation interval is introduced to faciliate the development of 
an iterative algorithm which yields both the minimum initi- 
ation interval and the corresponding cut set of the cyclic it- 
erative computational dependence graph (ICDG). The con- 
vergence of this iterative algorithm in finite iterations is also 
proved. 

1. INTRODUCTION 

A simple example of a recurrent algorithm is an infinite 
impulse response (IIR) digital filter: 

y(n) = a * y(n - 1) + b * u(n) (1) 

where y(n) is the output and u(n) is the input. The compu- 
tation of y(n) can not be commenced until the completion 
of the previous iteration where y(n - 1) is computed. In 
other words, the nth iteration depends on the (n - l)‘h it- 
eration. The time duration between the beginning of the 
execution of the nth iteration and that of the (n + l)‘h 
iteration is called the initiation interval. Due to the inter- 
iteration dependence relation, the minimum initiation in- 
terval gives an upper bound of the throughput attainable 
on a multi-processor implementation of the recurrent algo- 
rithm assuming negligeble inter-processor communication 
delay. Hence, deriving the minimum initiation interval is a 
crucial first step for the multi-module implementation of a 
recurrent DSP algorithm. 

In this paper, we consider a multi-module realization 
of recurrent algorithms with fixed inter-module communi- 
cation delay. A module may refer to an IC chip or other 
physical packages such as multi-chip modules (MCM). Each 
module may contain one or more processing elements (PE). 
PEs within the same module have dedicated communication 
links with negligible delay. However, due to limited num- 
ber of input/output links of each module, communications 
across module boundaries will incur a fixed communication 
delay which can not be ignored. 
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Figure 1: An ICDG example. 

As shown in Fig. 1, a recurrent DSP algorithm can be 
graphically represented by a directed graph, called itera- 
tive computing dependence graph (ICDG), G = (N, E). N 
is the set of nodes corresponding to the operations in the 
algorithm and is represented in the ICDG with associated 
computation time. E is the set of directed edges indicating 
data dependence between two operations. We define rc as 
the cycle computing time which equals to the sum of all the 
node computing time in a cycle C. We also define AC (2 1) 
to be the total dependence distance of a cycle C, which is 
the sum of the delay elements on all edges of that cycle. 
The minimum initiation interval, denoted by I,,,(G), then 
can be computed as: 

kwz(G) = ynG g (2) 

In [3], a realizability criterion is proposed to determine if a 
multi-processor realization of a given recurrent algorithm is 
feasible with a specific initiation interval. In [l], a number 
of algorithm transformation techniques are given to derive 
the desired multi-processor realization. In [4], an efficient 
realization method is proposed. In these previous results, 
it is assumed that inter-processor communication delay is 
negligible. 

2. TWO-MODULE IMPLEMENTATION PROBLEM 

To take into account the inter-module communication delay, 
the ICDG must be modified to reflect how the tasks are 
partitioned into different modules. The set of edges which 
correspond to inter-module communication forms a cut set. 
A delay node will be inserted to each edge in this cut set so 
that the delay incurred on these edges is treated as if they 
were extra computing nodes while calculating the minimum 
initiation interval. In other words, the minimum initiation 
interval now is determined by both the original recurrent 



algorithm (ICDG) and the way the ICDG is partitioned 
into different modules. 

In this paper, we consider only the case of two-module 
partitioning (ie. M = 2). Work is underway to consider 
more general cases. The process of assigning computation 
nodes in the ICDG to two modules is equivalent to that 
of finding a cut set which bisects the ICDG into two sub- 
graphs. The minimum initiation interval can be computed 
for this particular cut set. The objective of the two-module 
implementation problem then is to find the optimal cut set 
such that the corresponding minimum initiation interval is 
minimum among that of all possible cut sets. We note 
that an m-module implementation problem has been in- 
vestigated preliminarily in [5]. 

Taking this cut set into account, we consider a general- 
ized ICDG G’(N, E, I<) where h’ is the set of edges which 
forms the cut set. Let us denote G’ to be the ICDG trans- 
formed from G by replacing each edge e E K with a branch 
of the same source and destination and a delay node which 
models the inter-module communication delay. Once this 
transformation is done, the resulting ICDG, G’, can be ana- 
lyzed as if there were no inter-module communication delay 
as long as tasks assigned to the same module stay within 
the same module. Therefore, based on Eq. (2), the min- 
imum initiation interval corresponding to a particular cut 
set I( can be found as: 

Z(Zl-) = 
TC 

VT,““,, ac’ 

= max 
TC + le E C n ICI. H 

VCEG AC 
(3) 

Where ]e E COZi] is the number of edges in the intersection 
C n ZC, and, by definition, 101 = 0. With these notations, 
we are ready to formulate the two-module implementation 
problem: 

Problem 1. Given a ICDG G = (N, E) and a constant 
inter-module communication delay H. Denote K to be the 
set of all possible cut sets which can be imposed on G. Find 
an optimal cut set I<* such that 

The next lemma states that for each cycle C, there are at 
least a pair of edges which attend the minimum I,: 

Lemma 2 For VC E G and Ve E C, there exists another 
edge e’ E C such that I,, 5 I,. 

It-” = arg vx~rl I( I<) 
Consequently, let 

Before proceed further, let us comment that since the 
minimum initiation interval is defined on directed cycles in 
the ICDG, any cut set which does not break any cycle will 
not atfect the minimum initiation interval regardless the 
communication delay H. Hence in this paper, we shall focus 
on the partition of tightly coupled ICDG where every edge 
is part of a cycle. In the following three lemma, we will 
show that if G is not a tightly coupled ICDG, then there 
exists an optimal two-module partition of G such that the 
resulting minimum initiation interval will not be affected 
by the inter-module communication delay. 

Then, there exists an e’ E C and e’ # e* such that I,, = I,. . 
Or, equivalently, 

3.1. Simple Cut Set 

Due to space limitations, in the following development, 
proofs of lemma and theorems are omitted. They can be 
found in an accompanying full paper in preparation [a]. 

A cut set I< E K is a simple cut set if and only if for any 
cycle C E G, C n K # 0, IZt’n Cl = 2. If I< is a simple cut 
set, according to Eq. (3), 

3. NECESSARY INITIATION INTERVAL where 

Let us denote K, = {ZCle E Zi,Z( E K} to be the set of 
cut sets each of which contains a particular edge e. The is the minimum initiation interval without any partitioning. 

necessary initiation interval of edge e E E is defined as : 

Thus, I, is the smallest initiation interval of all cut sets 
which contain a specific edge e. Similarly, denote K:c = 
{ZClC II K # 0, I< 6 ZC} to be the set of cut sets which 
intersect with a particular cycle C. The necessary initiation 
interval of cycle C E G is defined as : 

Ic = ,lnpc I( Ii) 

Z, is the smallest initiation interval of all cut sets which 
break a specific cycle C. From these definitions, it is easy 
to show that for VK E K, 

With either I, or Zc, the 
problem 1 can be obtained 

I,,,(H) = min I, 
V&G 

Z(ZC) 1 max ZC 
vcnKf0 

minimum initiation interval in 
by 

or I,,,(H) = vyCnGZc (4) 

The relations between Z, and Zc are summaried in the 
lemma below: 

Lemma 1 

Ic = min I, 
eEC 

e* = arg rn$Z(e) 

(7) 

Z(K) = vnlFG 

I,,,(O) = max C 
VCEG AC 



Lemma 3 

Z, 2 max 

ZC > max 

Theorem 1 If I< is a simple cut set, then 

Z(ZC) = max I, 
VeEK 

3.2. Single-Node Cut Set 

A single node cut set is a cut set which separates a spe- 
cific node from the remaining nodes of the graph. More 
importantly, a single node cut set is a also simple cut set. 

The following theorem states that to find optimal two- 
chip partition, we need to consider only simple cut sets. 

Theorem 2 For any edge e E G, there exists a simple cut 
set, say ZC,, such that I, = Z(Ke). Similarly, for any cycle 
C E G, there exists a simple cut set, say Zic, such that 
zc = Z(Zic). 

3.3. The Iterative Algorithm 

As described in previous sections, computing I, becomes 
the main task to solve our problem, as well as to reduce the 
size of the multi-chip implementation problem. However, it 
is still not efficient to compute I, by its definition. Instead, 
we propose an efficient iterative algorithm to compute I,. 
The method is based on the recursive relation between I, 
and Zc, which are described in eqs. (5) and (7). 

If we can find a good set of initial values for either Ze’s 
or Ic’s, then we can use Eq. (5) and (7) as the iterative for- 
mulas to update Ze’s and ZC’S until they converge. Lemma 3 
gives a good set of initial values for the iterative algorithm 
below. 

Theorem 3 The Iterative Algorithm - Let 

w+2H 
ic(0) = max{-, 

AC 
max z}, VC E G (9) 

VC’EG A,) 

i,(O) = 0, Ve E G 

and the iterative formulas 

qt+ 1) = v~;~Ci~(t), VC E G 

ic(t+ 1) = vemjflccmax{i,,(t + l), ie2(t + 1)}(12) 
Ia 

Then for some 1 2 ti < co, and t > ti 

ie(t) = L(tl) Ve E G (13) 

w(t) = w(h) VC E G (14) 

The convergence criterion is either it(t) = ic(t - l), for 
VC E G, or ie(t) = i,(t - l), for Ve E G. Furthermore, 

I, = h(h), Ve E G (15) 

IC = e(h), VC E G (16) 

Outline of Proof: The proof is divided into four steps. Let 
ze(oo) and rc(oo) be the convergent values of z=(t) and it(t), 

we will prove 
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Figure 2: The ICDG in example 1. 

Figure 3: The list of computation for example 1. 

1. ie(t) and ;c( t) are non-decreasing in t. 

2. The number of iterations for ie(t) and it(t) to con- 
verge is finite (i.e., tl exists). 

3. I, 2 G(t), Zc 2 it(t) for all t. The result will be 
used in step four. 

4. I, = i,(co),Ve E G, ZC = ic(m),VC E G. 

The detailed proof can be found in [?I. 

The complexity of the iterative algorithm is O(the number 
of iterations X( I E I + I C I)) of operations of finding 
extreme values in a partial set, where I C I is the number 
of cycles. 

4. TWO EXAMPLES 

In this section, two examples are given to observe the con- 
vergence of the iterative algorithm. 

Example 1 The graph on the left-hand side of Fig. 2 shows 
the ICDG demonstrated in this example. The graph on the 
right-hand side of the figure labels the edges in the ICDG. 
In Fig. 3, we list all the computation up to the convergence 
and indicate two cases of computations, I,, (1) and Ic, (l), 
for better understanding. To focus on how. the graph struc- 
ture affects the changes of i, and ic values, we suppose that 



Figure 4: Example 2 

# of # of # of # of 
Example nodes edges cycles iter. 

40th orthogonal filter 473 590 757 2 
48th Gray-Markel filter 289 424 1176 3 
32th LMS filter 129 247 48 2 
42th normalized filter 337 461 871 2 

Table 1: Experimental results. 

H is large enough such that maXVCEG y, the initia- 
tion interval in single-chip implementation, doesn’t involve 
through the computation. The first column is the edge (cy- 
cle) list. The second column lists all the cycles (edges) con- 
tains (constructs) the edge (cycle). The remaining columns 
are the results of the iterations. In this example, it takes 
two iterations to converge. 

Example 2 Figure 4 shows the ICDG of this example. In 
this example, we use several H values and observe the num- 
ber of iterations needed to converge. The result shows the 
iterative algorithm is not sensitive to the change of H. 

5. EXPERIMENTAL RESULTS 

The iterative algorithm has been implemented for exper- 
imenting its convergence behavior and sensitivity to the 
change of H. Four higher order filters from [4] are tested 
in our experiments. We change H from 1 to 1000 non- 
uniformly for each benchmark and the result shows that 
the number of iterations to converge does not change with 
H in all the benchmarks tested. In additions, the iterative 
algorithm is shown very efficient in terms of the number of 
iterations to converge. For a large algorithm such as 48th 
Gray-Markel filter having 289 nodes, 424 edges and 1176 
cycles, the number of iterations to converge is as low as 
three. The results are summarized in the table below: 

6. DISCUSSION 

We have proposed an efficient iterative algorithm to com- 
pute the necessary initiation interval of edges, lets. Af- 
ter Ze’s are computed, the minimum initiation interval of 

two-chip assignment is obtained with ease. The minimum 
initiation interval of two-chip assignment serves a base of 
whether the DSP algorithm can be implemented in a multi- 
chip fashion. In additions, we can locate disqualified edges 
and prune them away before proceeding some m-chip as- 
signment procedure. In such a way, the size of the resulting 
graph may be reduced significantly. 
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