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ABSTRACT

Entropy optimization is used in signal compression, cod-
ing, estimation, and resource scheduling, among other ap-
plications. The paper presents a novel algorithm for entropy
optimization. The algorithm is motivated by the efficient
interior-point methods developed in Linear Programming.
The algorithm uses a Generalized Affine Scaling Transfor-
mation that is an extension of the Affine Scaling Transfor-
mation utilized in interior-point methods. I show that for
some entropy functions the proposed algorithm has supe-
rior convergence properties when compared to comparable
the interior-point methods. The proposed algorithm is also
shown to be related to, and a more general case of, the re-
cently developed FOCUSS algorithm.

1. INTRODUCTION

The Entropy optimization problem (EOP) occurs in many
areas of engineering. Its applications include image recon-
traction [1], failure diagnosis [2], and finding system’s equi-
librium [3], among other applications. In signal processing
and communication theory, entropy optimization is used for
efficient compression, estimation, and de-noising of signals
[4, 5, 6]. These problems are sometimes called the best ba-
sis selection problem where entropy is used as a measure of
concentration. The entropy of a process in this case can have
a meaningful statistical interpretation, such as the entropy of
the probability density function (pdf).

This paper presents a novel algorithm for solving en-
tropy optimization problems. The development is motivated
by the work in interior-point methods in Linear Program-
ming (LP). Linear Programming has undergone revolution-
ary development in the last 15 years, which has led to the the
development of new efficient algorithms. Much of this ad-
vance in Linear Programming has been associated with the
development of interior-point methods (IMPs). Several pre-
viously unsolvable large-scale LP problems were solved in
the last decade owing to the work on these methods. IPMs
for entropy programs have also been developed, but the con-
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version of theoretical results into numerical algorithms has
been slow so far.

The method proposed here differs from the standard IPM.
The proposed method uses a Generalized Affine Scaling Trans-
formation (GAST) which is a more general form of the Affine
Scaling Transformation (AST) used in the affine scaling IPMs.
GAST leads to a natural simplification of the affine scaling
IPM for the EOP. The proposed GAST algorithm, abbrevi-
ated as GASTA, is shown to have higher rate of local con-
vergence than the affine scaling interior-point method for
certain entropy functions. This algorithm is also shown to
be related to the recently developed FOCUSS algorithm [6],
with FOCUSS being a special case of GASTA. The work
presented here unifies these optimization schemes.

2. PROBLEM DEFINITION AND BACKGROUND

2.1. The Entropy Optimization Problem

The general convex optimization problem with linear con-
straints is
n
minimize h(x) = Z hi(z;) ()
i=1
subjectto Ax = b,

A€ R™™and b € R™. It is called an entropy optimiza-
tion problem if each &; is an entropy function defined as

R (i) = ps(|z:] % + @), 2

where u; > 0,¢9; > 0, and d; € R are constants. The
entropy functions in this definition include |z|2, — /|2, |;—|,
log|z|, and |z|log|z|, among others. This definition allows
complex-valued z.

Entropy functions take on small values when all but a
few entries of a sequence are negligible and large values
otherwise. They are used in many signal processing appli-
cations to measure concentration or spatial localization of a
sequence, which, in practical terms, is the number of non-
negligible elements in a sequence. Several entropy func-
tions are commonly used in signal compression and esti-
mation and have statistical interpretations. For example,



S log(lzs]) = Do, log|u;|? can be interpreted as the
entropy of a Gauss-Markov process k¥ — u(k). Minimizing
this function over all bases finds the Karhunen-Loeve basis
for the process [4]. The function —|z;|log|z;| can be inter-
preted as the entropy of the probability distribution function
(pdf) of a normalized sequence |x| [4]. It is also known as
the Shannon entropy. This function is actually the negative
of the entropy function defined by (2). Other entropy func-
tions used to measure concentration include the I, family of
entropies ||x||g,p € [0,2] [5]. Of those, Iy and I are not de-
fined as entropies under (2), while [, entropy for p € (0, 1),
must have a negative sign in accordance with (2).

2.2. Interior-point Methods

The notation used here and throughout the rest of the paper
follows closely the notation in [7].

Interior-point methods were first developed to efficiently
solve LP problems. The standard form of the LP problem is

minimize ¢’'x 3
subjectto Ax=b, z>0.

The relative interior of the LP problem is defined as the in-
terior of the feasible domain

P = {x € R"|Ax = b,x > 0}. (G

In LP the notion of polynomial performance is used to evalu-
ate algorithms. A method is called polynomial if the number
of operations required by this method to solve a given prob-
lem is bounded from above by a polynomial in the prob-
lem ’size’. This measure provides "the worst case’ bound on
computations required by a method.

IPMs were first introduced and analyzed in the 1960s.
They were largely ignored until Karmarkar’s derivation of
a polynomial interior-point algorithm for LP in 1984. The
innovative part of his gradient descent algorithm was the use
of the projective scaling transformation to re-scale the solu-
tion after each iteration. The proof of polynomial complex-
ity of the Karmarkar algorithm led an explosion of interest
in IPMs, with many new interior-point algorithms developed
and the works from the 1960s re-examed.

Although many versions of IPMs exist now, they can
be delineated into four categories: 1) Path-following meth-
ods; 2) Affine scaling methods; 3) Projective potential re-
duction methods; and 4) Affine potential reduction methods.
The algorithms can be distinguished further as primal-only,
dual-only, or primal-dual algorithms within each of the cat-
egories. Each subgroup can be divided further into short,
medium and long-step algorithms. Although the literature
on the IPM is enormous and includes thousands of papers, it
can be shown that all IPMs rely on two common concepts.
They all utilize a search direction and the central path, which
is a smooth curve in the interior of the feasible domain that

ends in the optimal solution [8]. The search direction for
each IPM can be shown to be a linear combination of two
characteristic vectors: the affine scaling and the centering
direction [8]. The algebraic path taken by each IPM is dif-
ferent, and which algebraic path is computationally superior
remains an unanswered question.

The development of the algorithm here is motivated by
the primal affine scaling IPM, first proposed by 1.I.Dikin in
1967 and later rediscovered in 1986 by Vanderbei at al. and
by Barnes. This method turned out to be a natural simplifi-
cation of Karmarkar’s projective algorithm. The primal and
dual affine scaling methods have proved to be efficient in
practice. This observation was in large part responsible for
the initial surge in interest in interior-point methods.

The primal affine scaling method is based on two op-
erations. First, an Affine Scaling Transformation (AST) is
carried out to ’center’ the current iterate, i.e. transform it
into the vector e = (1,---,1)”. The second operation is a
step in the steepest descent direction in the null space of the
transformed linear constraints.

Mathematically, this is described as follows. Assume xj,
is a feasible solution to the system Ax = b. Define ann xn
diagonal matrix

X = diag(xg)- (5)

The Affine Scaling Transformation is defined as
y =T (%) :Xk_lx. (6)

This transformation rescales each of the components of x.
The problem in the new variable y becomes

minimize c{y )]
subjectto  Azy =b, (8)

where Ay = AXj and ¢y = Xjpec. The steepest descent
direction is found by projecting the negative gradient —cy,
into the null space of A:

Py(=ci) = (I = Af Ap)(=cn), ©)
The updated solution in the transformed space is

Yit1 =Yg + arPr(—ck), (10)

for some step length . The update in the original space is
recovered from y, , ; using the inverse AST.

The affine scaling method was generalized to convex
programming in [9]. The approach taken here is different,
however. First, to make the method easy to apply to en-
ginering problems, x is not restricted to be positive, and can
be negative or complex-valued. Second, a Generalized AST
(GAST) is proposed and used in place of the AST to scale
the variables. The resulting GAST algorithm (GASTA) is
simpler computationally than the affine scaling algorithm
and can be seen as its natural simplification. Further, in



IPMs, the steps are restricted to the interior of the feasible
domain. Here, this restriction is removed and the only re-
quirement is that the objective function is reduced at each
step. GAST systematically re-scales the components of x
after each iteration. In summary, the affine scaling method
is interpreted quite broadly in the development undertaken
here. The feature of the affine scaling method that is used is
the search direction, which is a combination of a scaling and
the steepest descent vector, with the scaling being general-
ized. In fact, the GAST algorithm is not necessary an IPM.
But because its search direction is closely related to that of
an IPM, I use the term extended IPM to indicate this relation
and to emphasize the continuity of this development within
other work in functional optimization.

Although the affine scaling methods proved to be ef-
ficient in practice, many theoretical questions concerning
convergence and performance of these methods remain unan-
swered. Only global convergence under some conditions has
been proven for these algorithms, although it was proven for
convex programs under a primal non-degeneracy assump-
tion in [9]. Further, these algorithm are believed not to be
polynomial, although this has not been proven conclusively.

The theoretical results presented here show that the GAST
algorithm has some desirable convergence properties. Its
rate of convergence is shown to be superior to that of affine
scaling methods for certain entropies. These results provide
encouragement that GAST may be useful for solving certain
EOPs. The results also give insight into how this approach
may be extended further to design more efficient algorithms
for EOPs.

3. AN EXTENSION OF AFFINE SCALING
METHOD FOR ENTROPY MINIMIZATION

For simplicity and without loss of generality, assume that
R (z;) = |zl Vi (11)

For now, let’s further assume that hj(z;) = dlq|x|?+1.
This means that A(z) contains no linear cost components
nor products involving log |z|. Note that this eliminates the
Shannon entropy function || log || but permits log |z|. The
reason for the second assumption is that we want to illumi-
nate certain properties of the algorithm which is easier to
do in the simplified presentation. The general result for en-
tropies in (11) is given at the end.
Define GAST as

_4d
Sk = diag(|xg|™ 2)
y=Tx(x) = Sk_lx,

12)

where d is the same as in (11).
The problem in the new variable y becomes

hi(y)
subjectto Azy = b,

minimize

13)

where A = ASy and hy(y) = h(Sky) is the transformed
objective.

GAST does not ’center’ the solution x, to a point equidis-
tant from all the axes, as does the AST. Instead one can think
of it as a natural scaling for the objective h(x).

Steepest descent direction is still the best choice for re-
ducing the objective cost, since the Hessian of the cost is
diagonal here. The gradient with respect to y of the scaled
objective function is

1
Vyh(Sry) = Sk Vz h(x) = Skad-He _
1

1

S X = §.X%8.v, =

d+1+ X d+ 1k kokYE
Xg

1
d+ 17k

where y, = S, xy, is the current interior solution in the
transformed space. The motivation for the choice of GAST
should become clear now. The projected gradient direction
d} in this case is the projection of only the scaled solution
itself:

1 1

d/ =h = I—AfA 14

and the new solution y , ; in the transformed space is

(a7 ar
Yet1 = Yk d+1[ k AklYr =¥y d+1(}’k )
15)
The solution in the original space is recovered as:

Xpp1 = Xg — Ap (X — Sp AL D), (16)

with Ay, = daﬁ'
spaceisy, — A;i'b and the step length is Ag.

Equation (15) gives a general GAST update equation for
an arbitrary step length A;. If we now choose ay, = d + 1,

then (15) simplifies further to

The moving direction in the transformed

Yier1 = Af b, (17

and

Xp+1 = Sp AL b. (18)

(18) is equivalent to the update step of the FOCUSS algo-
rithm which was in developed in [6]. Equations (12) and
(18) define the general FOCUSS algorithm of [6]. FOCUSS
was developed to optimize a subset of the entropy functions
discussed here and its derivation was not based on the affine
scaling method approach. Rather, it was derived as a ’re-
weighted minimum norm algorithm’ where the solution of
the preceding iteration acted as a prior to constrain the min-
imum norm solution in the next iteration. The exact connec-
tion of FOCUSS to the primal affine scaling method has not
been made clear until now.



For the two of most common families of entropy mea-
sures h(x) = — > 7 |z(8)|P, p € (0,1) and the Gaussian
entropy h(x) = >_7 In|xz;|, the GASTs respectively become

Sk = diag|xs| =" (19)

and
Sk = diag|xg|. (20)

Note that the GAST for h(x) = Y. In|z;| is equivalent to
AST and the GAST algorithm in this case is equivalent to
the primal affine scaling method for z; > 0.

The notion of polynomiality that is used in LP to eval-
uate complexity of an algorithm is not defined for concave
functions, so computational complexity must be treated in a
different manner here. Here I discuss local and global con-
vergence of GASTA.

Global Convergence of GASTA: In [6], FOCUSS was
shown to converge globally for S}, given by (19) for integer
p < 1. S in (20) becomes a special case of (19). Following
the basic steps of this proof, it can be extended to show that
GASTA is globally convergent for d < —1in (11).

Local Convergence of GASTA: Here again we can re-
fer to the local convergence results of FOCUSS in [6] to
show that the local rate of convergence for GASTA is |d|.
This means that GASTA is quadratically convergent for the
Gaussian entropy h(x) = Y. In|z;| and its convergence
is superquadratic for h(x) = > 7 |2(i)[P for p < 0. Note
that the best rate of convergence obtained with interior-point
methods for convex programming is quadratic. This means
that GASTA has better convergence rate for entropy func-
tions h(x) = >_7 |z(i)|P, p < 0, and the rate becomes larger
with the decrease in p. This result is very evident in prac-
tice. It typically takes less than 9 iterations for GASTA to
converge to a solution when p < —1 is used, almost regard-
less of the problem size.

GAST rule for the general entropy function: Follow-
ing the above derivation, we can recognize the GAST for the
general entropy function (11) to be:

FeaN —1/2
S = diag (M) . 21D

i

4. DISCUSSION

It is important to realize that sophisticated implementation
techniques play the key role in the claimed efficiency of inte-
rior point methods. Existence of theoretical results does not
automatically translates into a valuable algorithm in prac-
tice. For example, in the case of interior-point methods for
convex programming, the conversion of theoretical results
into numerical algorithms has been very slow.

This makes the connection presented here, of GASTA
to the IPM, even more important because it opens up the

opportunity of using the existing results in IPM for imple-
mentation of the GAST algorithm. Implementation issues
include the initialization of the algorithm, checking for opti-
mality, minimizing the computational complexity, and regu-
larization of the algorithm to deal with noisy data.

For example, the computational bottleneck of both GASTA
and IPMs is in inverting a matrix to find the descent direc-
tion. Here one can and should rely on the existing imple-
mentations of Cholesky, CG, or LQ factorizations, including
the use of good sparse matrix techniques, developed for the
IPM. Similarly, the regularization methods developed for the
IPM can be tapped into for regularization of GASTA.

Finally, I would like to comment on some of the ques-
tions that are opened up by this work. What GASTA shows
is that a departure from the strict affine scaling transforma-
tion may be beneficial for optimizing at least some of the
objective functions. This brings up the question of whether
the ’best’ scaling can be determined as a function of the opti-
mized cost itself. Another question this brings up is whether
other IPMs for convex optimization may be extended based
on the ideas discussed here. For example, the path-following
IPMs are thought to be the most promising of all the IPMs
for convex programming, so further extension of these meth-
ods may prove beneficial.
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