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ABSTRACT

The performance of automatic speaker recognition systems is sig-
nificantly degraded by acoustic mismatches between training and
testing conditions. Such acoustic mismatches are commonly en-
countered in systems that operate on speech collected over tele-

phone networks, where different handsets and different network routes

impose varying convolutional distortions on the speech signal.

A new algorithm, the Modified-Mean Cepstral Mean Normal-
ization with FrequencyWarping MMCMNFW) method, which im-
proves upon the commonly-employed Cepstral Mean Subtraction
method, has been developed. Experimental results on closed-set
speaker identification tasks on a channel-corrupted subset of the
TIMIT database and on a subset of the NTIMIT database are pre-
sented. The new algorithm is shown to offer improved recognition
rates over other existing channel normalization methods on these
databases.

1. CHANNEL MISMATCH COMPENSATION

The channel normalization method presented in this paper extends
upon two existing channel normalization techniques: cepstral mean

subtraction (CMS), alsoknown as cepstralmean normalization (CMN),

and frequency warping. A brief overview of both methods is pre-
sented first.

1.1. Cepstral Mean Subtraction

Cepstral Mean Subtraction is one of the earliest and most popular
methods employed to ameliorate the effects of channel variability
in speaker and speech recognition systems. CMS feature vectors
are computed from the N cepstral vectors ¢y;5, % = 1,..., N
from a channel-corrupted speech utterance y(n) by subtracting the
cepstral mean, or average of all NV cepstral vectors, from each of
the original cepstral vectors &y;;:
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€ems;i = Cyii — Cyravgs 1=1,...,N, D

where Cy;qvg = = Ell &y;i. The principle behind this approach
is based upon the behavior of the cepstrum under convolutional dis-
tortions, and the assumption that the channel filter 2(n) does not
vary significantly over the duration of the utterance, i.e. h(n) is
a linear, time-invariant filter.! As is well known, a convolutional

IThis is generally a fair assumption for utterances lasting several sec-
onds, which is typical in many speaker recognition scenarios.

Richard J. Mammone

CAIP Center
Rutgers University
Piscataway, NJ 08854
mammone@caip.rutgers.edu

distortion in the time domain, such as that introduced by a channel,
corresponds to an additive bias component in the cepstral domain.
That s, if we denote the clean speech signal, prior to corruption by
the channel 2(n), by s(n), and the channel-corrupted speech signal
by y(n), then

y(n) = s(n) * h(n) <= & = & + &, 2

with * denoting linear convolution and &y, &, and &, denoting the
corresponding cepstral features. Now, taking the utterance-long time
averages of both sides of this cepstral relation, we have

N
2 a 1 -
Cysavg = N Cy;i
i=1
1 N 1 N
o o
= N E Cs;i-i-ﬁ E Chsi
i=1 =1

e

Es;a'vg +Eh;a'vg- (3)

Since it is assumed that the channel does not vary over the duration
of the utterance, the last summation becomes simply % Ell Ch,
or just &, the cepstrum of the channel. The middle summation cor-
responds to the cepstral mean of the clean (not channel-corrupted)
speechsignal s(n). If the distribution and variety of soundsin s(n)
is such that the average spectrum over the utterance is relatively
flat, then the corresponding cepstral mean vector will go to zero,
ie. .

Es;a'u g = 0. (4)

The cepstralmean of the channel-corrupted utterance y(n ), as given
by Eq. 3, then becomes
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which is just the cepstrum of the channel. Thus removing the time
average of all the cepstra from the cepstrum of each frame, as sug-
gested by Eq. 1, corresponds to subtracting the cepstrum of the chan-
nel. We can rewrite Eq. 1 as
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The resulting CMS cepstral vectors, €ems;i, 10 longer dependent
on &, are thus invariant to any channel present. This can also be
seen by noting that the subtraction of &, in the cepstral domain cor-
responds to deconvolution with &(n) in the time domain, or multi-
plication by IH—(:JT)I in the frequency domain.

1.2. Frequency Warping

Frequencywarping is a standard frequency domain signal process-
ing technique used to limit subsequent processing to a particular
range of frequencies within the Nyquist interval. The basic prin-
ciple in frequency warping is to map the desired frequency range
of interest, [Wmin, Wmax], 10 the entire Nyquist interval, [0, ] ra-
dians.? Such a mapping can be accomplished trivially by the fol-
lowing affine transform:

W — Wmi
(4]/ — min T, (7)

Wmar — Wmin

where w denotes the original radian frequency, and w’ denotes the
new radian frequency.

In the context of robust speaker recognition over bandwidth-
limited channels, such as with telephone speech, frequency warp-
ing is used prior to feature extraction to map the passband of the
channel to the entire Nyquist interval. For instance, in telephone
speech, the nominal bandwidth of the channelis approximately [300,

3200]Hz. Frequency warping is used to map this interval to [0, f,/2] Hz,

the Nyquist interval. In this manner, signal energy outside the pass-
band, which is bound to be relatively low in energy and highly sen-
sifive to noise, is completely ignored. In [7], it was found that fre-
quency warping alone offered significant performance gains on a
speaker identification task on telephone speech.

2. MODIFIED-MEAN CEPSTRAL MEAN
NORMALIZATION WITH FREQUENCY WARPING

In spite of its apparent simplicity, Cepstral Mean Subtraction has
been found to be a very effective method for combating the effects
of utterance-to-utterance channel variation [1], [7]. However, it is
not without its drawbacks. In practice, it has been found that the
clean speech cepstral mean, given by &s,q4v4 in Eq. 3, does not go
to zero, as implied by Eq. 4. Recall that since the cepstrum is the
inverse Fourier transform of the log magnitude spectrum, a zero-
vector cepstral mean corresponds to a “white”, or flat, average spec-
trum. Fig 1 shows the cepstral mean and corresponding log magni-
tude spectrum of a 15 second long utterance of clean (not channel-
corrupted), read speech. As is evident from this figure, the cepstral
mean is non-zero, and the corresponding log magnitude spectrum
is not flat. Taking this fact into account, Eq. 5 becomes

Ey;avg = ES;avg +¢én 3

and the CMS vectors given by Eq. 6 become

" " "
Cemes;i Cy;i — Cyjavg

= (Es;i+Eh) - (Es;avg+Eh)

= Es;i - Es;a'vg- (9)

2Note that for simplicity of presentation, we are only considering the
positive frequency half of the Nyquist interval. The same operations apply
symmetrically to the negative frequency half.
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Figure 1: Top: cepstral mean of an utterance of clean speech; Bot-
tom: log magnitude spectrum corresponding to same cepstral mean

From this expression, we see that in the CMS vectors €ems;i, the
dependence on the channel cepstrum, &}, is still removed. As the
channel may vary from utterance to utterance, and contains no in-
formation about the identity of the speaker, this quality is desir-
able.> However, additional information, namely the clean speech
cepstral mean, Cs;avg, s also removed. This term represents the
long-term average spectrum of the clean speechsignal, prior to cor-
ruption by the channel. It can also be interpreted as the cepstrum
corresponding to the average vocal tract shape of the speaker [8].
This component is what is shown in Fig 1. Unlike the channel cep-
strum, this term offers information which is useful for speakerrecog-
nition. In fact, some early efforts in speaker recognition used these
long-term spectral averages as features [2], [5]. Thus, subtraction
of this information in the CMS feature vectors results in the dis-
carding of speaker-dependentinformation, which would otherwise
be useful in identifying the speaker. As a result, overall speaker
recognition performance falls short of that which could be obtained
without the removal of such information. This observation is doc-
umented in [3], for instance.

The basic principle of the Modified-Mean Cepstral Mean Nor-
malization with Frequency Warping MMCMNFW) method is to
modify the cepstral mean &y, 4 4 in such a way as to reduce the com-
ponent due to the clean speech cepstral mean, &s; 4 g, While leaving
mostly the component due to the channel, &5, an idea suggested
in [6]. That is, we would like to create a modified cepstral mean
Ey;mmom = Cn. Then, performing Cepstral Mean Subtraction
with the modified cepstral mean should remove the channel bias
from the resulting CMS features, while leaving intact the compo-
nent due to the spectral average of the clean speech. In the MMCM-
NFW method, such manipulation of the cepstral mean is performed
in the log magnitude spectral domain on Y. 4(e’*), the Fourier
transform of the cepstral mean €y, qvg-

An analysis was performed comparing the graphical relation-
ship between the log magnitude spectra Y,.4(e’*) of the cepstral
means of clean speech utterances which had been passed through

3Tt should be noted that in certain applications, such as platform identi-
fication in military communications, it is desirable to preserve information
about the channel.
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Figure 2: Top: log magnitude spectrum of cepstral mean of an ut-
terance of channel-corrupted speech. Bottom: log magnitude spec-
trum of the corrupting channel filter

various linear time-invariant channels, A(n), and the log magni-
tude spectra H (e’ of those channels. Speech utterances from the
TIMIT speech database and telephone channel impulse responses
from the Wireline telephone channelsimulator [4] were used. Fig. 2
illustrates a typical case: The top frame shows the log magnitude
spectrum Yg, 4(e’“) of the cepstral mean of the channel-corrupted
speech utterance, and the bottom frame shows the log magnitude
spectrum H (e’*) of the channel used to corrupt the speech. Based
upon the analysis of many such plots, the following steps were em-
pirically determined to improve the approximation of the channel
spectrum H (e’“) by the cepstral mean log spectrum Y. 4(e’“):

1. Clipany portion of the curve Y, 4 (e?*) above the value 0 dB
to 0 dB.*

2. Translate the portion of the curve in the range [0, 500] Hz up
or down such that Ya,,g(eﬂ”mo ) =0dB;ie. Yaug(e?*) =
0 dB at 500 Hz.

3. Replace the resulting modified curve by an order-11 poly-
nomial fit.

The resulting modified Y, 4 (ej“’) is designated as YMMCM(ej“’ ).
Fig 3 shows the result of these processing steps on a typical cepstral
mean. The top panel shows the log magnitude spectrum Y4 4 (ej “)
of the cepstral mean of a channel-corrupted speech utterance, the
middle panel shows the modified spectrum Yaspsc M(ej “), which
results after applying the modifications detailed above, and the bot-
tom panel shows the response of the actual channel filter which was
used to corrupt the original, clean speechsignal. Note the closerre-
semblance to the channel filter after employing the modifications.

To perform Cepstral Mean Subtraction with Yasps¢ M(ej “), we
would compute its Fourier transform to yield &y, ararc ar, the corre-
sponding modified “cepstral mean”, and subtract &y, prarcas from
each frame’s original cepstral vector. However, since such non-
linear spectrum modifications may introduce components which may

4Note than in practice, the Oth cepstral coefficient, representing log en-
ergy, isnot retained. In converting the cepstral mean ¢y, qv g 10 Yao g(e?“),
the value of the cepstral mean’s Oth coefficient was set to zero.
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Figure 3: Top: log magnitude spectrum of cepstral mean; Middle:
above with “Mean Modifications”; Bottom: log magnitude spec-
trum of actual corrupting channel filter

no longer be accurately modeled by a finite length cepstral vector,
asis used in CMS to model the average spectrum, the cepstral mean
“subtraction” with &y, ararcas is actually implemented as a time-
domain filter representing the inverse of Yasarc M(ej “). Hence
the choice of the term normalization over subtraction in the name
MMCMNFW.

Finally, after performing Cepstral Mean Normalization with the
modified cepstral mean, frequency warping is used to map the aver-
age passband of all the channels to the entire Nyquist interval. Note
that this average passband frequency range can be determined em-
pirically, as was done in the experiments presented in the follow-
ing section, by visual inspection of the log magnitude spectra of the
cepstral means of the channel-corrupted speech. For the databases
used in these experiments, the passband of the channels was empir-
ically determined to be [300, 3200] Hz. The motivation for such
frequency warping was the observation that in the log magnitude
spectra of the channel-corrupted cepstral means, the signal energy
outside this frequency range dropped to very low levels relative to
that in the passband. Even if the channel could be accurately esti-
mated outside the passband, the inversion of such low-energy fre-
quency regions of the signal spectra would result in significant am-
plification of noise in those frequency regions, an undesirable side
effect. The use of frequency warping circumvents this problem by
eliminating such out-of-passband components.

After performing Cepstral Mean Normalization with the modi-
fied cepstral mean, and then frequency warping the resulting speech
signal, the standard cepstral feature vectors are computed on the
signal output of the frequency warping procedure to yield the MM-
CMNFW feature vectors.

3. EXPERIMENTS

Closed-set speaker identification experiments were conducted on
two databases. The first database, designated as W-TIMIT, consists
of clean read speech utterances taken from the 38 speakers in the
TRAIN section of the DR1 (New England Dialect) subset of the
standard TIMIT database. These utterances are downsampled to



method

| recognition accuracy

baseline 44.7%
CMS 63.7%
frequency warping 65.2%
CMS + frequency warping 64.7%
MMCMNFW 82.1%

Table 1: Results on W-TIMIT database

| method | recognition accuracy |
baseline 50.5%
CMS 43.2%
frequency warping 64.7%
CMS + frequency warping 56.8%
MMCMNFW 67.9%

Table 2: Results on NTIMIT database

8 kHz, and then filtered by one of eight randomly-selected channel
filters from the Wireline channel simulator previously cited. Five
of each speaker’s utterances were used to train a vector quantizer
(VQ) codebook, and the remaining five were used for testing.” The
utterances averaged approximately 3 seconds in duration (includ-
ing silence). Results on W-TIMIT are summarized in Table 1, which
compares the recognition rates achieved using no channel compen-

sation (baseline), Cepstral Mean Subtraction (CMS), frequency warp-

ing to [300, 3200] Hz (frequency warping), Cepstral Mean Subtrac-

tion followed by frequency warping to [300, 3200] Hz (CMS+{requency

warping) and Modified-Mean Cepstral Mean Normalization with
Frequency Warping MMCMNFW). The features used in all cases
are FFT-derived cepstra, computed after the channel normalization
method has been applied.

The second database consists of those utterances in the NTIMIT

database directly corresponding to those used in the W-TIMIT database

just described. NTIMIT consists of the original TIMIT utterances
played back and resampled after transmission along various routes
through the public telephone network. The results achieved on this
database with the aforementioned channel normalization methods
are summarized in Table 2.

As can be seen from Table 1, on the W-TIMIT database, all
channelnormalization methods yielded better recognition rates than
the baseline result, where no normalization was used. The new MM-
CMNFW method offered the highest accuracy on this database. Ex-

amining Table 2, we observe the same pattern on the NTIMIT database,

with the curious exception of Cepstral Mean Subtraction, which
would be expected to outperform the baseline on such a channel-
corrupted database. Again, MMCMNEFW oftered the highest recog-
nition accuracy on this database.

4. CONCLUSION

A new method for performing channel normalization for automatic
speaker recognition systems has been presented. The new method
improves upon the standard Cepstral Mean Subtraction approach
by 1) refining the log spectrum of the cepstral mean to be shaped

SNote that all five training utterances used to train a given speaker’s VQ
codebook were filtered with the same, randomly-selected channel filter.

more like a channel response, and 2) not attempting to invert low-
energy frequency ranges in the average spectrum. Future work will
address adaptation of the MMCMNFW method to communication
channels other than those types encountered in telephone networks.
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