SEPARABLE KARHUNEN LOEVE TRANSFORMS
FOR THE WEIGHTED UNIVERSAL TRANSFORM CODING ALGORITHM

Hanying Feng

Michelle Effros

Department of Electrical Engineering
California Institute of Technology
Mail Code 136-93
Pasadena, CA 91125, USA

ABSTRACT

The weighted universal transform code (WUTC) is a two-
stage transform code that replaces JPEG’s single, non-optimal
transform code with a jointly designed collection of trans-
form codes to achieve good performance across a broader
class of possible sources. Unfortunately, the performance
gains of WUTC are achieved at the expense of significant
increases in computational complexity and larger codes. We
here present a faster, more space-efficient WUTC algorithm.
The new algorithm uses separable coding instead of direct
KLT. While separable coding gives performance compara-
ble to that of WUTC, it uses only 1/8 of the floating-point
multiplications and 1/32 of storage of direct KLT. Exper-
imental results included in this work compare the perfor-
mance of new separable WUTC with both the WUTC and
other fast variations of that algorithm.
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1. INTRODUCTION

Transform coding is one technique used to achieve the per-
formance benefits associated with high dimensional coding
at lower computational expense. In transform coding, high-
dimensional data vectors are first sent through a transforma-
tion designed to decorrelate the vector components and then
compressed using a collection of scalar quantizers.

One of the most common transforms used in transform
coding for images and video is the discrete cosine trans-
form (DCT). The DCT is a good decorrelating transform
for “smooth,” “natural” images. In the JPEG image coding
standard, the DCT is combined with a collection of scalar
quantizers. While the JPEG image coding standard allows
the user to specify a new collection of scalar quantizers (in
the form of a quantization matrix) for each image, many
implementations of JPEG use a single default quantization

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY NSF
CAREER AWARD NO. MIP-9501977, THE INTEL 2000 PROGRAM,
AND THE POWELL FOUNDATION.

matrix for all images. This matrix is scaled up and down to
achieve a range of rates.

The JPEG algorithm’s performance is hurt by the al-
gorithm’s rigidity. The optimal transform code is data de-
pendent. The optimal collection of scalar transforms varies
from data set to data set. The optimal decorrelating trans-
form is a function of the data statistics. While the JPEG
algorithm allows for variations in the scalar transforms it
allows no such variation in the transform itself. Further,
many implementations of the JPEG image coding standard
do not take advantage of the allowed variation in the collec-
tion of scalar quantizers since the design of scalar quantizers
is considered to be too computationally intensive to be in-
cluded in the encoding procedure for each incoming image.

The Weighted Universal Bit Allocation (WUBA) algo-
rithm [?] is a DCT-based transform code that replaces the
single quantization matrix used in JPEG with a collection of
quantization matrices. The quantization matrices are jointly
and optimized off-line during a training procedure, thereby
removing the quantization matrix design from the encoding
procedure. The encoder chooses among the quantization
matrices in its collection on an image by image or block-by-
block basis. Since choosing among a collection of quanti-
zation matrices is much more computationally efficient than
designing a new quantization matrix for each image, the re-
sulting code gives a good computation / performance trade-
off. Further, since the collection of quantization matrices
is fixed, quantization matrix description requires very little
rate, since each quantization matrix may be described by its
index in the list of quantization matrices.

While the WUBA algorithm goes a long way towards
addressing the limitations of the JPEG algorithm, it too re-
lies on the DCT, which is not an optimal transform for all
possible data sets. In particular, while the DCT achieves
good decorrelating performance on smooth, natural images,
it achieves poor performance when used to decorrelated im-
ages with more high-frequency content, such as computer
generated graphics or images containing text. For applica-
tions involving broader data sets, significant performance



benefits may be achieved by using alternate transforms in
place of the DCT.

The Karhunen Loeve Transform (KLT) is a good alter-
native to the DCT for image coding applications. The KLT,
which is a transform composed of the normalized eigenvec-
tors of the correlation matrix associated with a specific set
of source statistics, is a data dependent transform that in
some sense achieves the optimal decorrelation and energy
compaction for image compression. Based on the theory
of stochastic processes, this method can decorrelate data
completely if the data is stationary. Yet because of its data-
dependence, the KLT had traditionally not been very popu-
lar for image compression.

The Weighted Universal Transform Code (WUTC) [?]
is a two-stage algorithm that adds KLT transform coding
to the WUBA algorithm. The resulting algorithm contains
a collection of transform codes. Each transform code con-
tains a KLT and a quantization matrix optimized for some
subset of the training data. The transform codes in the col-
lection are jointly and optimally designed off-line during
a training procedure. As in the WUBA algorithm, the en-
coder chooses among the transform codes in its collection
on an image by image or block-by-block basis. Since the
collection of transform codes is fixed, the description of the
chosen transform code requires very little rate, since each
transform code may be described by its index in the list of
transform codes.

The WUTC achieves significant gains over the DCT-
based WUBA algorithm and the single-quantization matrix
JPEG algorithm, yet this distortion-rate performance im-
provement is achieved at the expense of higher computa-
tional complexity and more prohibitive memory requirements.
In particular, optimal implementation of the WUTC algo-
rithm on 64-dimensional data vectors (8 x 8 data blocks as
in the JPEG algorithm) uses a collection of 64-dimensional
KLTs. Given an image containing IV 8 x 8 data blocks and
a KLT containing K transform codes, encoding a single im-
age requires at least K X N X 64 x 64 floating-point multi-
plications. Thus the computational complexity is very high.
The storage complexity associated with the WUTC algo-
rithm is also high. The dimension of each transform matrix
is 64 x 64. So for the typical coder and decoder require
K x 64 x 64 = 4096 K coefficients to describe the code’s
KLT matrices. (A typical value for K is 64.)

The goal of this work is to find alternative transform
codes achieving the performance gains of the WUTC algo-
rithm at a lower expense in computation and memory.

2. THE SEPARABLE WEIGHTED UNIVERSAL
TRANSFORM CODING ALGORITHM

In this paper, we replace the 64-dimensional KLT of the
WUTC algorithm with a separable pair of KLTs — one of

which decorrelates 8 x 8 data block column by column, and
the other of which decodes the data row by row. The com-
bined pair of transforms is a sub-optimal transform that ap-
proximates the performance of direct KLT, with 1/4 of the
floating point multiplications of the KLT. The transform is
stored as a pair of 8 X 8 matrices, here denoted by L and R,
where L performs the transformation on the columns and R
performs the transformation on the rows. The transforma-
tion operation is then implemented as Y = LX R, where X
is an 8 x 8 matrix of source coefficients and Y the corre-
sponding 8 x 8 matrix of coefficients in the transform do-
main. Implementation of the matrix multiplications may be
further stream-lined using the Winograd algorithm [?], as
described in the Appendix. Using this approach, described
briefly in the Appendix, the pair of matrix multiplications
requires only 4 X 8 x 9 x 2 = 576 floating-point multiplica-
tions — roughly 1/8 those required per transformation using
a 64-dimensional KLT.

The WUTC algorithm using a separable pair of KLTs
is here called a separable WUTC (SWUTC). Designing an
optimal SWUTC requires the joint design of a collection
of optimal separable transform codes. The joint design al-
gorithm is a variation on the optimal design algorithm de-
scribed in [?], where the KLT design is replaced with a sep-
arable KLT design. The design algorithm uses an iterative
descent technique. The initial collection of codes is chosen
at random. Each iteration proceeds as follows.

1. Optimize the encoder for the decoder. Map each data
vector in some training set to the transform code that
reproduces that data vector with the best distortion-
rate performance.

2. Optimize the decoder for the encoder. Redesign each
transform and each quantization matrix to match the
data that mapped to the associated transform code.
The transform is designed using the KLT design al-
gorithm on the row statistics for the design of R and
the column statistics for the design of L. See the Ap-
pendix for a discussion of the transform design.

3. Optimize the entropy code. Redesign the entropy code
used in describing the transform codes. The entropy-
coded description length of each transform code should
be chosen to match the negative log probability of that
transform code.

The above three steps are iterated until convergence.

The SWUTC implemented using the Winograd algo-
rithm reduces both the complexity and the memory required
to implement the WUTC algorithm. A SWUTC with K
transform codes uses N X [K x (8 x 68) + 32] = (544K +
32) N floating point multiplies for an image of N 8 x 8 data
vectors as compared to the N X K X 64 x 64 = 4096 K N
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Figure 1: WUTC with the full KLT compared to WUTC
with the separable KLT.

floating point multiplies in a WUTC of the same size. Simi-
larly, the SWUTC requires storage of K X2x 8% 8 = 128K
transform coefficients as opposed to the 4096 K required for
the WUTC. Thus the SWUTC reduces the complexity and
memory of a WUTC by factors of approximately 8 and 32
respectively.

Since the statistics of the rows and columns of an image
are typically similarly, memory may be further reduced by
using the same transformation on the rows and the columns
(L = R in the above transform equation). The resulting
code is called a single SWUTC (SSWUTC). The result-
ing code requires the same computational complexity as the
SWUTC, but reduces the memory requirements by another
factor of 2.

3. EXPERIMENTAL RESULTS

The following summary of results compares the distortion-
rate performance of the SWUTC and SSWUTC algorithms
to that of a variety of alternative transform coding algo-
rithms. In each case, rate is measured as entropy and distor-
tion is given by signal to quantization noise ratio (SQNR).
Each system is designed using a 2048 x 2048 image as its
training set. A different 2048 x 2048 image is used as the
test set in all experiments. Each image is a different scanned
page from the IEEE Spectrum Magazine, and both contain
similar proportions of images and text. Each weighted uni-
versal code (e.g., the SWUTC, SSWUTC, WUTC, WUBA
algorithms) uses a maximum of 64 codes per collection (K =
64) and allows a new code to be described for each 64-
dimensional vector.

Figure 1 compares the performance of the WUTC and
SWUTC algorithms. The SWUTC, which employs a sub-
optimal transform, achieves performance roughly 1 dB worse
than that of the WUTC. Thus the move from optimal KLT
to suboptimal separable KLT costs 1 dB in rate-distortion
performance but yields an 8 x improvement in complexity
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Figure 2: WUTC and a single optimal transform code (TC)
are compared with fast alternatives. The FWUTC and
JWUTC algorithms achieve complexity and memory reduc-
tions of a factor of k/64 relative to the complexity of a full
WUTC by removing rows from the WUTC’s transformation
matrix. (Each curve is labeled by the associated value of k.)

and 64 x improvement in memory requirements.

Figure 2 compares the SWUTC to several alternate fast
WUTC algorithms — namely the JWUTC and FWUTC al-
gorithms described in [?]. The FWUTC and JWUTC algo-
rithms achieve complexity and memory reductions to a fac-
tor of k/64 times the complexity of a full WUTC by remov-
ing rows from the WUTC’s transformation matrix. (Each
curve is labeled by the associated value of k.) In FWUTC,
the number of rows per transform matrix is kept constant
from transform to transform. In JWUTC, the number of
rows per transform matrix is allowed to vary from trans-
form to transform. As shown in Figure 2, the SWUTC gives
far better performance than either the JWUTC or FWUTC
of the same size (here labeled by “2”). From a complex-
ity stand-point, the SWUTC is roughly comparable to the
JWUTC and FWUTC labeled “8.” While the SWUTC eas-
ily outperforms the FWUTC, it suffers a slight performance
degradation when compared to the JWUTC of the same
complexity, but this code requires 4x the memory of the
SWUTC.

Figures 3 and 4 compare the performance of SWUTC to
SSWUTC and DCT-based codes respectively. In Figure 3,
the SSWUTC suffers a further 1 dB performance degrada-
tion when compared to SWUTC but requires half as much
memory. The DCT codes (JPEG, which uses a single quan-
tization matrix and WUBA which uses up to 64 quantization
matrices) give significantly poorer performance than either
the WUTC or the SWUTC due to the use of the DCT.
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Figure 3: WUTC with SWUTC and SSWUTC.
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Figure 4: Separable WUTC compared to DCT-based trans-
form codes.

4. APPENDIX

Separable KL.T Design

It is tempting to believe that the original data should be used
to train the column transform matrix L and that the trans-
form row transform matrix R should be designed on the
data given by the rows of LX rather than the rows of X.
In reality, however, both L and R may be simultaneously
designed from the original data. This is observation results
from the unitary nature of the transform matrices. In par-
ticular, if L = [LYL%--- L§]? (that is L; is the ith row of
matrix L, the rows of LX are L1 X, Ly X, ..., Lg X, and the
autocorrelation matrix of these rows is given by

(LX) (L1 X)) + ... + [(Ls X)* (L X)]
[X*(LEL1)X] + ... + [X*(L§Ls) X
XY L*L)X = XX

(since L unitary implies L* L = I). Thus, the auto-correlation
matrix of the rows of the transformed data equals the auto-
correlation of the rows of the original data.

An introduction of Winograd algorithm

The Winograd algorithm is a fast algorithm for reducing the
number of multiplications required for an inner product. Let
a = [a1,as,...,a2,] and b = [by, ba, ..., bay,] be two vectors
of dimension 2n. Direct calculation of the inner product
ab® = 37 | a;b; requires 2n multiplications. This num-
ber can be reduced as follows. First calculate the “pre-inner
products” a* = E?Zl asg;_1a9; and b* = E?Zl bo;_1b9;.
Notice that ab® = Y v, [(a2i+b2i—1)(azi—1+b2i)—a*—b*.
While this does not represent a savings for multiplying two
vectors, it may yield a savings if the above vectors appear
in matrix multiplications where each vector may be used
more than 1 time but a* and b* need be calculated only
once. For example, consider multiplying an m X 2n ma-
trix A = [A%, A%,---, A%,]® by the 2n X k-matrix B =
[B1, B2, --,Bg|. Evaluating the pre-inner-product of all
the row vectors of A and all the column vectors of B, re-
quires m X n + k X n multiplications. Using the Winograd
algorithm requires m X k X n more multiplications. So we
need m X k X n 4+ m X n + k X n multiplications in total
as compared with the m X k X 2n multiplications needed
to calculated the multiplication directly. When m or k is
very large, this savings can greatly reduce the number of
multiplications.

Since the transform matrices in SWUTC are fixed, we
can evaluate the pre-inner-products of the transform matri-
ces in advance. Then, when we send the data through a
SWUTC with K transform codes, we only need to evalu-
ate the pre-inner-products of the data matrix columns once
and the pre-inner products of the (transformed) data matrix
rows K times. This reduces the number of multiplications
to K x (8 x 68) + 32 multiplications per 64-dimensional
data vector.



