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ABSTRACT

Most state-of-the-art speaker verification systems need a user
model built from samples of the customer speech, and a
speaker independent (SI) background model with high acous-
tic resolution. These systems rely heavily on the availabil-
ity of speaker independent databases along with a priori
knowledge about acoustic rules of the utterance, and depend
on the consistency of acoustic conditions under which the SI
models were trained. These constraints may be a burden in
practical and portable devices such as palm-top computers
or wireless handsets which place a premium on computation
and memory, and where the user is free to choose any pass-
word utterance in any language, under any acoustic condi-
tion. In this paper, we present a novel and reliable approach
to background model design when only the enrollment data
is available. Preliminary results are provided to demonstrate
the effectiveness of such systems.

1. INTRODUCTION

Speaker verification is the task of automatically determin-
ing whether the claimed identity of a speaker is correct,
given some speech observations [1]. State-of-the-art fixed
phrase speaker verification systems verify the identity of the
speaker through a Neyman-Pearson test based on a normal-
ized likelihood score of a spoken pass-phrase [2]. If A is
the customer model, given some acoustic observations X,
the normalized score sy,orm (X, A¢) is usually computed as
the ratio of the likelihoods as follows:
p(X; )

Snorm (X, Ac) (X Ap)’ ey
where p(X; A) is the likelihood of the observations X given
the model A, and Ap is a so-called background model. The
customer model is usually a hidden Markov model (HMM)
built from repeated utterances of a pass-phrase spoken by
the customer during enrollment. This model is usually cre-
ated either by concatenating phone-based customer HMMs
or by directly estimating a whole-phrase HMM [3].The back-
ground model is usually an HMM that reduces the need for a
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Figure 1: Architecture of a traditional phrase based speaker
verification system (adapted from [3]).

speaker dependent threshold, and is built by concatenating
speaker independent phone models of the customer pass-
word. In applications where it is desirable to give the cus-
tomer the freedom to select his own password phrase, most
traditional systems assume that the phonetic transcription
of customer password is available, which in turn assumes
the availability of pre-trained multi-lingual phone models,
dictionaries and a set of letter-to-sound rules for the par-
ticular language. Because good phone end-points are nec-
essary, a speaker independent phone recognizer might be
used to derive the phone segmentation. The whole archi-
tecture of such speaker verification system can therefore be
quite complicated (cf. Fig 1). Furthermore, a good set of SI
background phone models often imply each model to have
a large acoustic resolution, i.e., more mixture components
per state, in order to have a good performance (e.g. [3]).
This means a higher demand of computation and memory
requirement which may not be desirable for applications
running on hand-held devices such as personal digital assis-
tants, palm-top computers or wireless phones. There is also
an issue of robustness - the background SI phone models
provided by the system may exhibit very different acoustic
properties from the operating condition. For practical and
portable applications, the previous requirements are not ac-
ceptable and are a burden on the customer and the system
developer. The customer may want to select a password in
any language, may choose to perform speaker verification
with any microphone under any acoustic condition.

Our goal in this work is to build a flexible, portable



speaker verification system which minimizes the constraints
on the customer and simplifies the whole system architec-
ture. We assume that the only speech material available is
the set of enrollment utterances provided by the customer,
that the customer is free to select a password phrase in any
language, and that no speaker independent models are avail-
able. We will show that even though the system is built with
no prior information, the performance is appreciably good,
though it does not match that of a system using very high
resolution SI phone models. But the focus indeed is on the
flexibility and simplicity provided by our novel approach.
The principle of such a system is explained in the next sec-
tion.

2. PRINCIPLE

Our working assumption is that the customer will choose
his/her own password phrase and will be asked to repeat this
utterance several times for enrollment. No other speech data
or model is available, nor orthographic or phonetic tran-
scription of the password utterance.

The acoustic information in the customer password phra-
se is modeled using a whole-phrase HMM, J., estimated
from the enrollment utterances. One disadvantage of using
a whole-phrase model is that pauses within the phrase can
be hard to model, and might upset the decoding and com-
putation of p(X; A.). However, in most practical situations,
password utterances are very short (less than 2 seconds) and
long pauses are unlikely.

Typical state-of-the-art speaker verification systems build
background models from speaker independent databases.
Some studies advocate that the background model A should
be derived from speakers randomly selected from a speaker
independent database [4]. Others suggest to select speakers
that are *“close” to the customer, and are therefore repre-
sentative of the population near the claimed speaker (cohort
speakers) [2, 5], which is expected to improve the selectivity
of the system against voices similar to the customer. Such
a scenario is impractical for portable applications since a
speech database would have to be provided to the customer.

Since cohort modeling emphasizes the use of speakers
having acoustic characteristics similar to the customer in or-
der to train the background model, we propose to build the
background model Ap directly from the customer enroll-
ment utterances. Of course, to end-up with a background
model \g different from the customer model A, it is nec-
essary to perturb the model Ap after or during training, or
to perturb the enrollment data before estimating the model.
This can be done in many ways, for example by adding
noise to the enrollment utterances before estimating Ap, or
by perturbing the variance of the background model after
training.

In this paper, we propose two different techniques to
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Figure 2: Proposed architecture of a phrase speaker verifi-
cation system.

perturb Ap. The first one is to use a background model Ap
having a small number of parameters compared to A., and
therefore a cruder acoustic resolution. The model A, is de-
signed to provide a fine acoustic resolution of the password-
phrase, while the model Ap only provides a rough acoustic
resolution. This can be done by using a small number of
states for Ap compared to A.. The architecture of the pro-
posed system is therefore very simple, and is represented
in Fig. 2. Ap acts like an anti-customer model, and each
customer has his/her own anti-model. The customer model
A. consists of a large number of states, say 25, while the
background model consists of a small number of states, say
less than 5. With such an architecture, the customer can
choose any password in any language, no speaker indepen-
dent data is used, and some useful acoustic normalization
is provided with the background model. Since both mod-
els A\; and Ag are trained from the same data, there is no
acoustic mismatch related to the environment between these
two models. That contrasts with systems using pre-trained
background models which are rather sensitive to changes in
the environment, and might need to impose some additional
constraints on the user, like for example the use of a partic-
ular microphone.

The second technique is to train a background model
as previously described, and to reverse the state order after
training, for example state 5 becoming state 1, state 4 be-
coming state 2, and state 3 being unchanged for a 5 states
background HMM. By perturbing the temporal information,
but still keeping a spectral information related to the cus-
tomer model, we obtain a background model more “smear”
that can still provide some acoustic normalization when com-
puting the likelihood ratio.

3. EXPERIMENTS AND RESULTS

3.1. Database Description

The experimental evaluation is carried out using a database
of spoken phrases recorded digitally over the telephone net-
work. Volunteers and paid subjects recorded utterances from
their home, office or other phones by dialing a toll-free num-
ber, and were encouraged to use a variety of phones, exclud-



ing speakerphones, so that a range of conditions are sampled
over the different recoding sessions. The data used for the
purpose of this evaluation consists of a phrase common to
all speakers (“I pledge allegiance to the flag™).

The database contains utterances spoken by 100 speak-
ers, 51 males and 49 females. Each speaker provided 5
tokens of the common phrase in a single training session.
Two tokens of the common phrase were also recorded in
each of 25 testing sessions. Consequently, a total of 50 test
utterance tokens are available from each speaker. For each
speaker, 2 sessions (4 utterances) of the same sex speakers
are also used as imposter test data, which is an average of
200 imposter utterances per speaker.

3.2. Front-end Processing

The signal is first passed through a 3200Hz low-pass anti-
aliasing filter. A 300Hz high-pass filter is then applied to
minimize the effect of processing in the telephone network.
The resulting signal is pre-emphasized using a first order
difference and 10th order linear predictive coding (LPC) co-
efficients are derived every 10ms over 30ms Hamming win-
dowed segments. The 10 LPC coefficients are converted to
12th order cepstral coefficients (LPCC) and a feature vec-
tor of 24 components, consisting of 12 LPCC and their first
derivatives is produced at each frame.

3.3. System Description

The speaker verification system is operated in a text-depen-
dent mode. For evaluation purpose, all customers have the
same password phrase, but the system architecture is such
that each speaker could select his own password. Three
models, A., Ap and Ag; are built for each customer. The
detailed model A, is a left-to-right HMM, consisting of 25
states with up to 4 Gaussian mixture components per state.
The crude background model Ap is a 5-states, left-to-right
HMM with 4 Gaussian mixture components per state. A
silence model Ay, consisting of 3 states and 4 Gaussian
mixture components is also trained for each customer. All
Gaussian probability density functions have a diagonal co-
variance matrix. Some experiments have been carried out
using an even cruder background model with only 1-state
and 4 mixtures, which is simply a Gaussian mixture model.
All models are trained using the segmental K-means algo-
rithm [6], followed by 5 iterations of the EM algorithm, us-
ing the 5 training utterances. The covariance matrices of
the detailed model ), are tied in order to get a more robust
estimation.

For each test utterance, a Viterbi decoding is performed
using the detailed model A, and the silence model Ay to
find the optimal state segmentation and get a speech/silence
segmentation. The speech segment is also decoded using
the background model Ap. Average log-likelihood scores

EER Raw Score | Normalized Score
Male 7.63 4.67
Female 9.38 6.59
Average 8.49 5.61

Table 1: Average individual equal error rates (EER). 25-
states customer model, 1-state background model, 4 mix-
tures per states. Both customer and background model are
training using KC-means followed by 5 EM iterations

log p(X|A;) and log p(X |Ap) are obtained over the speech
segment for the two models A, and Ap.

Two verification scores are used to evaluate the perfor-
mance of the system. The first one, §pq0 = log p(X|Ac),
called “raw” score, involves only the log-likelihood derived
from the model A.. The second one, §p,orm = log p(X|Ac)—
logp(X|Ap) is the normalized score corresponding to the
log-likelihood ratio. A priori thresholds are not assigned in
our experiments and the system performance is evaluated
from average individual equal-error rates. Equal-error rate
is calculated by sorting customer and imposter verification
scores and finding the score value such that the fraction of
customer scores less than that value is equal to the fraction
of imposter scores greater than that value. This fraction is
the equal-error rate, meaning that if the decision threshold
is set to that score value, the false rejection rate is equal to
the false acceptance rate. The equal-error rate is derived in-
dividually for each speaker and averaged over male and fe-
male speakers to get an average individual equal error rate.

3.4. Results

In a first set of experiments, we used a 1-state background
model Ap with 4 Gaussian mixture per state. We recall that
the customer model . is a 25-states HMMs, using tied di-
agonal covariance matrices. The average equal error rate is
given in Table 1 for male and female speakers, using the
raw and normalized scores. The normalized score provides
a significant improvement over the raw score, and illustrates
that a background model can be built without any speaker
independent data.

In a second set of experiments, we increased the number
of states in the background model to check whether incor-
porating a temporal information in the background model
would improve the performance. Results in table 2 are ob-
tained using a 5-states background model. The raw scores
are the same as in table 1 since the raw score does not in-
volve the background model. A degradation of the EER is
obtained, compared to the single state background model.
That contrasts with systems using speaker independent ba-
ckground models where temporal information in the back-
ground model provide a significant improvement over a 1-



EER Raw Score | Normalized Score
Male 7.63 5.62
Female 9.38 7.15
Average 849 6.37

EER Raw Score | Normalized Score
Male 6.49 5.29
Female 7.69 6.80
Average 7.08 6.03

Table 2: Average individual equal error rates (EER). 25-
states customer model, 5-state background model, 4 mix-
tures per states. Both customer and background model are
training using K-means followed by 5 EM iterations

Table 4: Average individual equal error rates (EER). 25-
states customer model, 5-reversed states background model,
4 mixtures per states. The customer model and background
model are trained using K-means only.

EER Raw Score | Normalized Score
Male 6.49 4.99
Female 7.69 6.62
Average 7.08 5.79

State-of-the-art speaker verification systems rely on too many

4. CONCLUSION

Table 3: Average individual equal error rates (EER). 25-
states customer model, 1-state background model, 4 mix-
tures per states. The customer model is trained using K-
means only. The background model is trained using K-
means followed by 5 EM iterations

state background model [3].

The raw EER we obtained are different from what Partha-
sarathy et al. obtained on the same database since Partha-
sarathy et al. plugged a speaker independent variance into
the customer model ).. Another difference is that we used
several iterations of the EM algorithm after the K-means
training while Parthasarathy et al. only used KX-means. In
a third set of experiments, we reproduced the first experi-
ment without EM iterations. Results are given in table 3. A
significant improvement of the raw EER is obtained, while
the normalized EER is almost unchanged but still more than
15% better than the raw score. That illustrates the sensitiv-
ity of the raw EER to implementation details, and therefore
the need for a normalization scheme to improve the system’s
robustness. However, we should point out that the obtained
improvement is still far from the typical 50% of improve-
ment that can be obtained using speaker independent back-
ground models on this database.

In a last set of experiments, we investigated the idea of
creating a background phrase model by reversing the order
of the states after training. A 5 states background model
HMM was trained, and after training, the state sequence
was inverted. The results are given in Table 4. The results
are slightly better that what was obtained using the original
state order in Table 2, and confirm that a background model
can be designed from the user enrollment data, when an ap-
propriate smearing technique is provided. Further work is
needed to define a smoothing technique that would reduce
the gap in performance between a speaker dependent and a
speaker independent background model.

assumptions like for example the availability of speaker in-
dependent data or models or of a transcription of the pass-
word phrase. These assumptions limit the design of flex-
ible speaker verification applications for portable devices
such as palm-top computers, and some new techniques are
therefore needed. This paper presents preliminary results
towards this goal, where we focus on the design of a speaker
verification system where the only data available are the
customer enrollment utterances. While our results are still
far from the performance level that can be obtained with
likelihood ratio scores derived using speaker independent
background models, some encouraging improvements have
been obtained compared to the use of a simple likelihood
score.
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