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ABSTRACT

The Beltrami geometrical framework for scale-space flows
is generalized to nontrivial color space geometries and im-
plemented in analysis and processing of color images. We
demonstrate how various models of color perception, inter-
preted as geometries of the color space, result in different
enhanced processing schemes.

1. INTRODUCTION

The relationship between processing of color images and
color perception is a longstanding issue that had attracted
variety of approaches and techniques. To start with, in deal-
ing with color images one has to determine and define the
proper space for their representation. Traditionally, the R,
G, B coordinates have been transformed into one achro-
matic coordinate and two chromatic coordinates not neces-
sarily related to the neurophysiology and perception of color
[1]. Further, the representations have been considered, in
most cases, in relation to the chromatic aspects of the im-
age space separately from the spatial coordinates. As far as
the spatial coordinates are concerned, several recent studies
have demonstrated the advantages inherent in partial differ-
ential techniques adopted from heat-like and diffusion-like
models [10].

We present and implement a method that employs the
recently proposed geometric Beltrami framework for non-
linear scale-space methods [10]. According to this frame-
work, an image is treated as an embedding of a manifold in
a higher dimensional spatial-feature manifold. The embed-
ding manifold is a hybrid space that includes spatial coor-
dinates as well as feature coordinates. The features may in-
clude, apart from intensity and color, elements of the inten-
sity jet bundle (basically derivatives of the intensity), wavelet
parameters like typical local size and orientation [3], sta-
tistical characteristics [15] and others. The choice of the
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appropriate embedding space depends on the class of im-
ages to be processed and the nature of the task. We encode
knowledge about the task and the nature of the feature space
in the geometry of the embedding space.

A grey level image is considered in this framework as
a two-dimensional surface (i.e. the graph of I(z,y)) em-
bedded in the three-dimensional space whose coordinates
are (z,y,I). A color image is accordingly considered as a
two-dimensional surface embedded in the five-dimensional
space whose coordinates are (x,y,U;,Us,Us) where the
coordinates (U, Us,Us) are color coordinates (for exam-
ple (U1,Us,Us) = (R,G, B)). Texture can be treated as a
4-dimensional space embedded in R® [3].

It was suggested [10] that the nonlinear scale space may
be treated as a gradient descent with respect to a functional
integral that depends on the geometry (i.e. the metric) of the
image surface, as well as on the embedding and the geom-
etry of the embedding space. In the examples treated in the
past, it was assumed that the embedding space is Euclidean
and that the system of coordinates that describes it, is Carte-
sian [10], [3]. In fact, the geometry of the embedding space
is flexible and can be determined according to an a priory
knowledge about the class of images to be processed and
the high level task that one has in mind [11]. We view the
geometry of the embedding space as the interface between
the high-level task, the a priory knowledge and the low-level
process to be implemented.

We treat in this study color images. Textured color im-
ages with a non-Euclidean embedding space are treated else-
where [11]. Color space and its perception has fascinated
researchers for over a century. It is natural, from our view-
point, to apply our framework for this class of color images
since the knowledge accumulated along the years is orga-
nized and encoded in the geometry of the color space. This
form is especially convenient and ready to use in the Bel-
trami framework.



2. COLOR SPACE GEOMETRY

Two issues should be addressed in the process of evaluat-
ing the geometry of the color space. The first relates to the
variables (or coordinates), and the second to its geometry.
Attempts to describe the color perception geometry go back
more than a hundred years. Helmholtz [2] was the first to
define a ‘line element’ (arc-length) in color space. He first
used a Euclidean R, G, B space defined by the arc-length:

ds® = (c,dlog R)? + (c,dlog G)* + (cpdlog B)®. (1)

His first model failed to represent empirical data of human
color perception. Schrédinger [8] modified the Helmholtz
model by introducing the arc-length:
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where L = ¢, R + ¢,G + ¢ B and ¢,, ¢4, ¢, are constants.
Schrédinger’s model was later found to be inconsistent with
findings on threshold data of color discrimination.

Koenderink et al. [4] generalized these line elements
with a family of metrics
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where different values of a correspond to different models:
a = 2 is the Helmholtz model, o = 1 is Schrodinger’s.
Koenderink et al. [4] studied the o = 0 case.

Stiles et al. [13] advocated another generalization of the

Helmholtz line element

ds® = (crdlog(R'))* + (cydlog(G"))* + (crdlog(B"))*,

“
where R' = aR + b with a, b constants, and similarly for
G' and B’. Other analytical attempts culminated in the Vos-
Walraven line element which is much more involved and
will not be treated here.

MacAdams constructed an empirical line element based
on direct psychophysical experiments. His result can be
given in tables and graphs only. The theoretical challenge is
the construction of an analytical line element that is capable
of explaining all the features of the color perception space
that were found in MacAdams experimental data.

3. THE GEOMETRIC BELTRAMI FRAMEWORK

This framework is based on geometrical ideas borrowed from
general relativity and high energy physics. The essence of
the method is summarized in two aspects of the formalism:

a) A two-dimensional image is a Riemannian surface em-
bedded in a higher dimensional Riemannian manifold which
is called the spatial-feature manifold. Let introduce on the

nonlinear surface a local coordinate system (o!,0?). The
embedding of this surface in, say, a three-dimensional space
with coordinates (X1, X2, X3), is done by specifying, for
each point of the surface, the three-dimensional coordinates,
namely:

(X(a',0?),X?%(c",0%), X3(c",0%)). (5)

We say that X is a map that embeds the surface ¥ with
metric (g, ) in a higher dimensional Riemannian manifold
M with metric (h;;). The local metric (g, ) is given as
the induced metric in terms of the embedding map and the
embedding space metric by

dim M
gun(0',0%) = 3 hij(X)8, X8, X7, (6)
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where §,X? = 0X(o',0%)/0o". In the sequel we will
use Einstein convention and drop the summation sign.

We introduce a one-parameter family of embedded im-
ages (X*(o',0%;t))3_,, where t is the evolution indepen-
dent variable, called the scale or “time”. This parameter
determines the degree of blurring or denoising of the im-
age.

b) From a geometrical viewpoint, this family of embedded
images describes a flow of a two-dimensional surface within
a higher dimensional space. The dynamics of the surface
along the flow are governed by nonlinear heat equation ap-
plied to this one parameter family of images. The equation
is derived as a gradient descent of a functional that weight
embedding maps in a geometrical manner.

The functional in question, S[-, -, -], depends on both
the image manifold and the embedding space. Denoting
by (%, (gu)) the image manifold and its metric and by
(M, (hi;)) the spatial-feature manifold and its metric, the
map X : ¥ — M has the following weight [7]:

S[X%, guv, hij] = / do'do® /99" 8, X8, X' hi;(X),
)
where g is the determinant of the image metric, g*¥ denotes
the inverse of the image metric, y,v = 1,2, and ¢, =
1,...,dim M.

The Polyakov action is the generalization of the Ly norm
from Euclidean space to curved spaces. Here, do!do? Vg is
the area element of ¥ and g** 8, X 0, X’ h;;(X) is the gen-
eralization of |VI|? to maps between non-Euclidean man-
ifolds. Note that the volume element as well as the rest of
the expression is invariant under reparameterization, that is,
o — 6*(o',0?). The Polyakov action depends on the
geometrical objects and not on the way we describe them
via our parameterization of the coordinates. In other words
the resultant value of the functional does not depend on the
choice of local coordinates.



Another important consideration is the choice of the em-
bedding space and its geometry. In general, we need infor-
mation about the task at hand in order to adopt the right
geometry.

Using standard methods in the calculus of variations, the
Euler-Lagrange (EL) equations, with respect to the embed-
ding, are (see [10] for derivation):
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where 1";. i are the Levi-Civita connection coefficients with

respect to the metric h;; (defined in Eq. (12)), that describes
the geometry of the embedding space.
We view scale-space as the gradient descent:
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Note that we used our freedom to multiply the Euler-
Lagrange equations by a strictly positive function and a pos-
itive definite matrix. This is done in order to get a reparame-
terization invariant expression. This choice guarantees that
the flow is geometric and does not depend on the param-
eterization. The operator that is acting on X* in the first
term of Eq. ( 8) is the natural generalization of the Lapla-
cian from flat spaces to manifolds, denoted by A, and called
the Laplace-Beltrami operator or in short Beltrami operator.
When the embedding is in a Euclidean space with Cartesian
coordinate system, the connection elements are zero. If the
embedding space is not Euclidean, we have to include the
Levi-Civita connection term since it is not identically zero
any more.

4. THE BELTRAMI FLOW

The metric of the embedding space is composed of the spa-
tial metric and the color space metric as a direct sum, namely:

d82 = dszpatial + ﬂds?"eature ‘ (10)

More general line elements for the color-spatial space are,
in principle, possible. One such possibility is to consider
a non-constant 4 such that the strength of the conjugation
between the spatial and color coordinates is fixed locally in
space and/or the image colors. This possibility as well as
the issue of how to choose [ is dealt with elsewhere [12].

Other possibilities may include a non-trivial metric el-
ements that tie together spatial and color coordinates (i.e.
non trivial coefficients of dzdl for grey level images, or
dydR for color images). These possibilities are not very
well understood theoretically and their implications are un-
der current investigation.

The color space metrics in Section 2 are all diagonal,
namely have the form h;; = Sa;; (R, G, B)d;;.
The induced metric elements are according to Eq. (6):

g1 = 1+ B8(amR2 +a,,G2 + apB2)
g2 = gn = BlarrRoRy + 09yG2Gy + ayy By By)
g = 1+ B(ar Ry + agyGy + an BY). (D

Note also that this two-dimensional image induced metric

is different from the one we had in the Euclidean case. This
implies that the choice of the color space geometry has a
direct impact on the first term in the diffusion equation (i.e.
ﬁ@u (v/99"* 8, X").) This is not the only place where changes
should be made. The second term which includes the Levi-
Civita connection coefficients, which are non-trivial in this
case, should be evaluated as well. The definition of the
Levi-Civita coefficients is

F;’k = §hll(6jhlk + Bkhjl - alhjk), (12)

where there is an implicit sum over /.
In the case of the Schrodinger model we find, for exam-
ple:

1
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where L = ¢, R + ¢,G + cB. A short analysis results in
the following coefficients
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Combining Eqgs. (8)(11) and (14) together we finally get
the following flow:
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Here g¥ = g% [0z (g% = 8g" /dy) and g, = Og/0z
(gy = 0g/0y).



Figure 1: The sailboats image constructed from a CCD cam-
era by a de-mosaicing algorithm. Left: Original image.
Right: Stiles with 3 = 1. (this is a color image)

Figure 2: Left: Stiles with 8 = 5, Right: Schrodinger
algorithm.  (for a closer look point to http://www-
ee.technion.ac.il/users/zeevi/zeevi.htm)

Other models are calculated similarly. The application
of these models results in the images presented in Figs. (1)
and (2). The processing is executed by the Euler approxi-
mation of the PDE, with central difference scheme for the
spatial derivatives and backward scheme for the time deriva-
tive.

These images illustrate profound differences between
the effects of the various smoothing schemes. However,
quantative comparison is difficult since there is no univer-
sal quality criterion. A detailed comparison according to
different classes of images and quality measures remains to
be done.
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