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ABSTRACT

In this paper we extend the infomax technique [1] for blind signal
separation from the instantaneous mixing case to the convolutive
mixing case. Separation in the convolutive case requires an unmix-
ing system which uses present and past values of the observation
vector, when the mixing system is causal. Thus, in developing an
infomax process, both temporal and spatial dependence of the ob-
servations must be considered. We propose a stochastic gradient
based structure which accomplishes this task. Performance of the
proposed method is verified by subjective listening tests and quan-
titative measurements.

1. INTRODUCTION

Blind signal separation (BSS) is now becoming a mature topic.
Much work [1][3][4][5][6] has been done on BSS for the case
of instantaneous mixing; i.e., when the transfer functions from
the sources to the sensors involve only scaling operations on the
inputs. However, less effort has been directed towards the more
difficult convolutive mixing case, where a much broader class of
transfer functions can exist. The convolutive case occurs more
often in practice; e.g., acoustic mixing in live reverberative envi-
ronments. The ability of BSS algorithms to handle the convolutive
mixing case greatly expands the potential range of applications
where these algorithms can be put to use.

Previous work in BSS for the convolutive mixing case includes
[21[71181[91[10]. However, these methods all suffer from limita-
tions, such as the ability to deal with only two input sources, re-
strictions on the mixing system, or excessive computational com-
plexity. In this paper, we present a relatively simple infomax tech-
nique for blind signal separation in the convolutive mixing case
that exploits the temporal and spatial properties of the output sig-
nals in a straightforward manner.

Our system model is depicted in Fig. 1. M samples from N
statistically independent, zero-mean sources are mixed through an
N x N multidimensional dynamic channel to produce an N x M
matrix X of observations. We denote the nth,n = 1,...,N
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row X, of this matrix to represent the variation in time of the
nth signal over all available M samples; likewise, we denote the
mth,m = 1,..., M column (snapshot) as x(m), which repre-
sents the spatial variation (i.e., across sensors) at the mth sam-
ple instant. An equivalent notation is used for the signals s, v, u
and y shown in Fig. 1. Our objective is to produce outputs vy,
which are the desired output signals corresponding to the sepa-
rated sources. This objective is realized by determining an un-
mixing system W € RV*¥ and a temporal processing system
A € RY*¥ (both whose elements are FIR filters) so that the joint
entropy of the outputs y is maximized.

In this paper we assume the elements of the N x N mixing
system F are FIR filters of known length K + 1. It is straightfor-
ward to show [11] that separation of the sources can be achieved
using an N X N unmixing system W whose elements consist
of FIR filters of length Ly + 1 = (N — 1)K. We can define
W, e RN*N £ =0,..., Ly as the matrix of FIR filter weights
at delay £. The quantity A¢,£ =0,..., L4 is defined in a corre-
sponding way from A. In this case however, because there is no
cross—coupling between the channels, the A are diagonal.

2. INFOMAX CRITERION FOR BSS

Let us define the vector x € MY as vec(X)'. A similar defini-
tion holds for the quantities s, v, u and y. Then the output v can
be expressed in terms of the observations as

v=Wx D
where W is given as
Wo
W, W
W=|: )
Wi, ... Wo
Wi, ... Wo

In a similar way, we can define the variable u as

u=Av (3)

IThe vec(+) operator concatenates the columns of its matrix argument
into one long vector.
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Figure 1: A blind signal separation structure for the convolutive
mixing case.

where A is defined using the A, in a corresponding way to W in
2.
The auxiliary output vector y is defined as
y.i:g(uj)’ j=1,...,MN, (€]
where g(-) is a suitable nonlinearity [6][5].

We intend to achieve spatial separation of the outputs v by
maximizing the mutual information between the sources s and the
outputs y with respect to A and W, in a manner analogous to the
method proposed by [1]. This is equivalent to maximizing the joint
entropy H(y) of the outputs y. Maximizing H (y) (under suitable
constraints) has the effect of driving the elements of y towards
statistical independence. When the input sources are independent,
this criterion is sufficient for blind signal separation. In the convo-
Iutive case however, the observations x are generally dependent in
both space and time; thus, H(y) is maximized by forcing both the
temporal and spatial dimensions of x towards independence. In
this proposed configuration, the function of W is to provide spa-
tial independence of the outputs, whereas the function of A is to
provide temporal independence.

To achieve separation, an expression for H(y) in terms of W
and A is required. In this vein, we can express the joint pdf f, (y)

of y as
fz(x)

= 5
where J is the Jacobian of the transformation of x into y, or
9y1 Oy1
dxy " Bxp
J =det (6)
Oym Oym
dxy " Bxp

where each element of the above is given by

Oyp1 Byp1
5 Bz 41 e dxgnN
Yp . .
== = : : , pg=1,....,.M. (7
Ox4 . .
9y 9y
Bz 41 e dxgnN

From (6) we have

vy vy Huy Huy

Ox1 e Oxpr vy e Ovr
J = det . . det

v v Sups Sups

Ox1 e Oxpr vy e Ovr

duy Bups
-det
Oy m Oy m
du; "' Bupy
MN
= (det W)(det &) ] u;- ®)
Jj=1

In this paper we use g(u) = tanh(u). Then, y; is given as

y; =1-yj. )
Using (8) and (5) we have
H(y) = E[nfy(y)]
= E[ln|J]|] - E[ln fz(x)]
MN
= E|In|det W|+1In|det A| +1In ] Iy}l
Jj=1
+H(x). (10)

We now have an expression for H(y) in terms of the parameters
of interest. An off— line algorithm for separation given a block
of M samples could be achieved by directly minimizing (10) with
respect to W and A.. However, an on-line algorithm is more desir-
able. In this respect, we now propose a stochastic gradient ascent
algorithm for blind signal separation, which takes into account the
previous M samples of data, by maximizing H (y) with respect to
W and A.

3. TRAINING RULES FOR W AND A

We now consider the case for W. The stochastic gradient update
for the £th weight matrix W is given from (10) by

OH(y)

AW; « oW,

o]
= W, In | det W| * 5w,

lnH il (1D

The first term evaluates as

0 0
W, In|detW| = BW In| det Wo|
-1 .
B { [Wel ™ ite=0 = )
0 otherwise.

We now consider the differentiation of the second term in (11)
with respect to a particular element wpqe, p,g = 1,..., N of Wy.
This term separates into a sum of log—terms, where only one term
depends on wpqy:

d MN
In
dwpge J:Zl

dy;
de

d M N Qi
dwpql Z: g In d’l:imn
= d’wpqz Z Z In(1 - y,,m

m=1n=1
N
du
— l 1— 2 mn
Z (1 = Yrmp) P
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Now, we must concentrate on the term dmy, /dwpqe. Considering
only Wy, the mth block u(m) € R of u is a convolution:

Ly

u(m) = Z A, x [Wex(k—£+m)],
k=0

m>La. (14

The differentiation of the above with respect to the pgth element of
‘W, involves only the pth column of Az , _# and the gth element
of x(k—£+m). Further, because A, is diagonal, the only non-zero
element in the pth column of Ay, , g is the scalar ap (L4 — k). So
we get

Qumn _ { A ap(La — k)zg(k—£+m) ifp=n
dwpqe 0 otherwise

(15)
Substituing Eq. (15) into Eq. (13) we have:

dw‘iql Zrﬂr/zr:l 25:1 In(1 - yrznn) =
ZZ=1(_23IMP) i:o ap(La —k)zg(k— £+ m)

(16)
Let
Ly
Zpg(m—£0) = ap(La —k)zg(k —L+m)  (7)
k=0

Then Eq. (16) becomes

M N M
d
dWpqt 3 (1 —ymn) = ) (~2ymp)zpa(m — £). (18)
re m=1n=1 m=1

Expressing the above in matrix form, we have the on-line learning
rule for W,

W™ -2y, @2, if€=0
AW‘ * { _2ym®zm—l = 1;"'aLW (19)
where
z11(m) le(m)
Z21(m) ZzN(m)
Zm = . . 20)
le(m) ZNN(m)

and the ® operator, which maps an N X 1 vector y,, and an N X
N matrix 2z, into an N X N matrix, is defined according to the
following rule:

Ym1211(m) Ym1zin (m)
Yma221(m) Ymazan (M)

Yo O2Zm = : : 2D
YymnzZn1(m) Yymn2ZnN (M)

We can now turn our attention to training A.. In this case, we re-
alize that ideally, A must produce outputs u which are temporally
independent. This may not be possible using only the FIR filter
structure proposed in Fig. 1. However, the structure can produce
uncorrelated outputs, which in many cases closely approximates
independence. The training rules we develop generate an A for
which the resulting temporal dependence is minimized.

The development of the training rule for A is similar to that
for W. Using (10) the adjustment for a stochastic gradient ascent
rule for a particular A, satisfies

0H(y)
AA
¢ % Taa,
MN
d . )
= a—Alln|detA|+a—Alln1_[1|yj|. (22)
o

As before, the first term evaluates as

M[Af]™" ife=0

o -
——In|det A| = 23
OA, n|det Al { 0 otherwise. (23)

By analogy to (13), we differentiate the second term of (22) with
respect to a particular element apq to get

d MN . dy; ~ M N (_2 ) dumn (24)
da 52 du; _ZZ Ymn) e '
pat ST 7] 11 g

‘;”"”‘ evaluates to
Gpql

dumn _ | vp(m—1) ifp=g=n
dapge | O otherwise

The derivative

(25

Substituting (23) (24) and (25) into (22) and combining into matrix
form, we have

ifé=0
£=1,...,La.
(26)

[Ao]_1 — diag[2ym ® Vvm]
Ahdp o { —diag[2ym ® vim]

where ® means element—by—element multiplication.

4. RESULTS

We demonstrate the performance of the algorithm for an N =
2, K = 6 mixing system. The sources are two segments of speech,
4.1 seconds in duration, sampled at 8kHz, normalized so that their
maximum amplitude is unity. The speech segment s; is a male
speaking the phrase “Marge, it takes two to lie— one to lie, and
one to listen”, while so is a female utterance of “How could you
Krusty? I'd never lend my name to an inferior product!”.

The matrices W, and A, are all initialized to the identity ma-
trix. The updates at iteration ¢ are made in accordance with (19)
and (26) as

Wi+1] =
Woli] +nw ({Woli]} ™" — 2yli] ©=[]) if£=0
W,[i] — nw (2y[i] © z[i — £]) £=1,...,Lw
@7
A corresponding rule is applied for the A, from (26) , but using
the quantity n4 instead. The mixing system F is specified as

Fii(z) = 1408271407272 40427 +0.32"* +
0.227° +0.127°

Fia(z) = 0.6+052""+052">+042724+0327* +
0.227° +0.127°

For(z) = 0540527 " +0427%40.352">+0327* +
0.227° +0.127°

For(z) = 1409271 +082724062"°+042"*+

0.3z % +0.127°



A signal to interference ratio, SIRy,, defined as the desired
signal energy to interfering signal energy on the nth channel after
convergence is obtained, was calculated. The results for SIR,, vs.
1w are shown in Table 1, for values L4 = 20 and na = 5 X 108,
The converged speech waveforms corresponding to the bold entry
of Table 1 are shown in Fig. 2. The SIR’s of the observations x
themselves before W are 3.21 dB and 5.22dB respectively. These
quantitative results, in conjunction with subjective listening results
which were performed, confirm that a significant level of separa-
tion is indeed achieved. Note that it is difficult to assess the level
of separation by direct visual comparison of s and v in Fig. 2,
because the output signals v have been subjected to a significant
filtering operation imposed by the mixing and unmixing networks.

Experimental results have verified that the Frobenius norms
||AW||r and ||AA||F approach zero after about 3 seconds of
speech, indicating that converged values for W and A exist, at
least for the case discussed. Qualitative experiments have also in-
dicated the proposed technique is insensitive to initial conditions
of Wand A.

|| nw | SIR1(dB) | SIRz(dB) ||

0.005 30.15 16.54
0.05 19.45 16.77
0.5 15.83 6.06

Table 1: SIR’s for different learning rates when K = 6.
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Figure 2: Performance of the algorithm for the L = 6 case:
sources (a) s1 and (b) s2 get mixed through matrix F to create sig-
nals (c) x1 and (d) x2. Separation is achieved after convergence,
as seen in (e) vy and (f) va.

5. DISCUSSION AND CONCLUSIONS

‘We have presented an extension of the infomax technique for blind
signal separation to the convolutive mixing case. The extension
involves maximization of the joint entropy of y with respect to

W and A, which are responsible for minimizing statistical depen-
dence amongst the elements of y in space and time, respectively.
Stochastic gradient ascent rules have been derived. The perfor-
mance of the method has been verified by subjective listening tests
and by quantitative measurements.

The natural gradient [4][5], which is well recognized to yield
better performance for the instantaneous mixing case, has not yet
been derived for this proposed technique. That is a topic for further
work.
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