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ABSTRACT

In digital communications, orthogonal pulse shapes are often used
to represent message symbols for transmission through a channel.
The design of such pulse shapes is formulated as a convex semidef-
inite programming problem, from which a globally optimal pulse
shape can be efficiently found using interior point methods. The
formulation is used to design filters which achieve the minimal
bandwidth for a given filter length, and the minimal filter length
for a given bandwidth. The effectiveness of the method is demon-
strated by the design of waveforms with substantially improved
performance over the ‘chip’ waveforms specified in recent stan-
dards for digital mobile telecommunications.

1. INTRODUCTION

One of the fundamental operations in digital communications is
the representation of a message symbol by an analog waveform
for transmission through a channel. The most common tech-
niques involve linear pulse amplitude modulation (PAM) of a self-
orthogonal waveform (or approximation thereof). In conventional
communication systems, the available analog PAM technology has
tended to restrict orthogonal waveform design to a choice be-
tween a small set of waveforms (e.g., rectangular pulses, pulses
with raised-cosine power spectra). However, the increasing de-
ployment of baseband digital signal processors has extended the
class of waveforms which can be easily implemented. In such a
situation, the design of the waveform can be transformed to the
design of an orthogonal multi-rate discrete-time finite impulse re-
sponse (FIR) filter. Unlike conventional FIR filter design objec-
tives, which can often be formulated as optimization problems
with analytic or computationally efficient solutions (e.g., convex
linear programming problems), the orthogonal FIR filter design
problem has a translation orthogonality constraint which is not
convex. Such non-convexity makes design algorithms for orthog-
onal FIR filters susceptible to being trapped by local minima. To
overcome this difficulty, multiple starting point techniques or the
branch-and-bound approach can be used, but they typically yield
only limited success.

In this paper, we reformulate the design problem in terms of
the autocorrelation sequence of the filter, based on the observa-
tion that many of the desirable properties of an orthogonal pulse
shape are actually properties of its autocorrelation. In that case,
the translation orthogonality constraints become linear and hence
convex. Once the autocorrelation sequence has been designed, the
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Fig. 1: A multi-rate DSP implementation of a baseband digital
communications scheme.

transmission and reception filters can be extracted (non-uniquely)
by spectral factorization. We use the Positive Real Lemma [3]
to transform the infinite set of linear inequality constraints which
is required to ensure factorizability [1] into a finite linear matrix
inequality. The transformed problem is a convex semidefinite pro-
gramming problem [4] whose global optimal solution can be found
in an efficient manner using interior point methods. In addition we
use a result in [3] to compute the minimum phase spectral factor
directly. We point out that the state space transformation was first
suggested in [5] in the context of conventional FIR filter design.
Recently, it has been employed in the design of orthogonal energy
compaction filters for signal compression [6].

In this paper, we show that apart from the design of orthogo-
nal energy compaction filters [6], a number of additional important
pulse shaping filter design problems can be cast as semidefinite
programmes and hence efficiently solved. The problems consid-
ered here include finding filters achieving: a) the minimum band-
width for a given filter length; and b) the minimum filter length
required to achieve a certain bandwidth, where bandwidth is mea-
sured in terms of spectral energy concentration, or with respect to
a spectral mask. The applicability of our techniques are demon-
strated in several examples, including the design of: a) filters with
improved performance over the root raised cosine filters; and b)
‘chip waveforms’ with improved performance over the chip wave-
form specified in IS95, the recent Code Division Multiple Access
(CDMA) based mobile telephony interim standard. (Further de-
tails, some extensions and a more complete reference list are avail-
able in [7].)

2. BASEBAND PULSE AMPLITUDE MODULATION

Consider the multi-rate digital signal processing (DSP) imple-
mentation of a baseband digital communication scheme in Fig. 1.
For notational convenience, we consider only real-valued systems,
but the methods can be extended to the complex-valued case in
a straightforward manner. The real data are waveform coded
by PAM as s.(r) = X, d[n]p(t —nT'), where p(r) = X glklos(r —
kT /N), and the received signal is passed through the (approxi-
mately) matched filter Y; g[—k]¢-(kT' /N —1) ~ p(—1). Here ¢(r)
incorporates the digital to analog converter (DAC) characteristic



and the smoothing filter, and ¢,(—t) is the ‘anti-aliasing’ filter at
the receiver. Assuming that the filters ¢s(r) and ¢,(¢) are suffi-
ciently flat across the bandwidth of interest, a common design goal
is to find a filter g[k] which minimizes the spectral occupation of
the communication scheme subject to the constraint that the fil-
ters are self-orthogonal at translations of integer multiples of N
(see (la) below). The orthogonality constraint ensures that there
is no inter-symbol interference in a distortionless equivalent chan-
nel, and that the receiver filter neither amplifies nor correlates the
white noise component of §[k]. (Compensation for the filters ¢(7)
and ¢,(r) is discussed in [7].)

The spectral occupation of a communication scheme is usu-
ally measured in terms of its (time-averaged) power spectrum. For
the simple case of stationary white data with zero mean and vari-
ance vy, the (time-averaged) power spectrum of s[] is S;(e/2%) =
Vg ‘G(ejz"f Ny ‘2, where G(e/2™) is the Fourier transform of g[#].
Due to the fact that g[k] is FIR, it is only approximately bandlim-
ited. One commonly used measure of the spectral occupation [1]
is the 100Y% energy bandwidth, denoted By, which is the smallest

B such that foﬂ |G(e/))2df > yfl/z |G(e/*™)|> df. For conve-
nience, we will normalize the filter energy so that Zi;é glk? =
2 [P 1G> Pdf =1.

3. AFEASIBILITY PROBLEM

In this section we introduce the fundamentals of our design frame-
work by studying various formulations of the following simple fea-
sibility problem for the filter in Fig. 1: For a giveny, B, N and L,
either find a filter g[k] of length at most L with a 100v% energy
bandwidth less than or equal to B, or show that none exists. This
problem can be formulated directly in terms of the filter coeffi-
cients as follows:

Formulation 1 Given vy, B, N and L, either find a filter g[k] of
length at most L such that

L-1

2{, glkglk—Ng =3¢,  £=0,1,...,|(L-1)/N], (la)
k={N

B .
/0 (6P df > /2, (1b)

or show that none exists. Here | x| denotes the greatest integer < x.

Unfortunately, both constraints in Formulation 1 are non-convex
in the parameters g[k]. As a result, determining an answer to the
above feasibility problem tends to be rather difficult. However, by
using the autocorrelation of the filter g[],

Zg glk+m, 2

the feasibility problem can be re-cast:

Formulation 2 Giveny, B, N and L, either find an autocorrelation

sequence rg[m|,m=1—L,2—L,...,L —1, with rg[—m] = rg[m],
such that
rg[¢N] = 8[¢], for£=0,1,...,[(L—1)/N]|, (3a)

/OB Ry(e™™)df >v/2, (3b)

Rg(e”™) >0, forall f €10,1/2), (3c)
where R, (/2™ is the discrete-time Fourier transform of rg[m), or
show that none exists.

Formulation 2 is equivalent to Formulation 1 and since rg[—m] =
rg[m], they have the same number of variables. The additional
constraint in (3c) is a necessary and sufficient condition for r,[m]
to be facton'zable in the form of (2). By noting that Rg(e/>™) =

rg[0 ]—l—ZZm 1 Fg[m]cos(2mmf), the constraints in (3b) and (3c)
are clearly linear and hence Formulation 2 is a linearly constrained
convex feasibility problem. However, (3c) is a semi-infinite con-
straint in that it must be satisfied for all values of f € [0,1/2]. Such
a constraint can be handled numerically (e.g., [2]), but may lead to
overly conservative designs and can be rather awkward numeri-
cally.

Inspired by the work of Wu et al. [5] we now apply the fol-
lowing lemma, known as the Positive-Real Lemma (e.g., [3]), to
transform the semi-infinite constraint in (3c) into a finite dimen-
sional constraint with some auxiliary variables.

Lemma 1 (Positive-Real Lemma) Ler H(z) be a real rational
Junction with its poles (if any) inside the unit circle. Suppose
that H(e) is finite, and H(z) admits a controllable and de-
tectable state space realization H(z) = d + ¢(zI — A)™'b. Then
H(e/™Y 4 H(e= ™) > 0 for all f € R if and only if there exists
a real symmetric matrix P such that

el —ATPb
24— b7 Pb

—ATPA

M(P) = (" — ATPb)"

] >0. (@

Using a result of Lyapunov it can be shown that all symmetric
matrices P satisfying (4) are positive semidefinite.

To apply Lemma 1, let Ry(z) = H(z) +H(z™!), where
0 I ,| 0
H(z) = 0 o | 1 |, 5)
rll=1 7 |1/2
7y = [rg[L—2],rg[L—3],...,7[1]], and we have used the com-
b

mon notation £ d+e¢(zI — A)~'b. This realization

d
is controllable and detectable. Formulation 2 can then be re-cast:

Formulation 3 Given v, B, N and L, either find rg[m], m =
0,1,...L—1, and P = PT such that (3a) holds,

% i | sin(2nmB) /m > v/2 —B, (6

and (4) holds for the realization in (5), or show that none exist.

Formulation 3 is a semidefinite feasibility problem (or linear ma-
trix inequality system) and is equivalent to Formulations 1 and 2.
It is convex and can be solved in an efficient manner using interior
point methods [4].

A particular advantage of Formulation 3 is that it can be simply
modified to produce the minimum phase spectral factor, implying
that there is no need for further spectral factorization once we have
obtained a feasible autocorrelation sequence r,[m]. This is shown
in the following lemma (collected from results in [3]).

Lemma 2 Assume the same setting as Lemma 1 and that (4)
holds for some P = PT. Then there exists a minimal solution



P 1o (4); ie, VP = PT such that (4) holds, P > P. Let
dy = v/2d —bT Pb, and ¢, = (¢! — AT Pb)/dy. Then W (z) =
dy + e, (zI — A)~b is the minimum phase spectral factor (up to
a sign ambiguity) of H(z) +H(z™").

For the realization of H(z) in (5), and P = [g}‘ ?12] partitioned
12 P22

conformally with that realization, the minimum phase spectral fac-
tor of Re(z) = H(z) + H(z™'), and hence a filter which satisfies
Formulation 3, is given by

V1i-p» k=0,
gl = [Fg_ﬁ{z]L_l_k/g[o] k=1,2,...,L-2,
rolL—1)/8[0] k=11,

where [v]; denotes the ith element of a vector v.

4. SOME ENERGY BANDWIDTH DESIGNS

A natural extension to the feasibility problem studied in the pre-
vious section is to search for the smallest bandwidth B such that
there is a filter of length L with By < B. Although a solution to this
problem could be attempted using a non-convex formulation in-
volving the filter g[k], we now show that the problem can be solved
in an efficient and structured manner using the convex feasibility
problems in Section 3.

Problem 1 For a given N, L and v, find a filter achieving minB
over rg[m], m=0,1,...,L —1, P = P! and B subject to the con-
straints in Formulation 3.

For a fixed value of B, Problem 1 is the convex feasibility problem
in Formulation 3. Furthermore, that feasibility problem will yield
a positive result for B > B* and a negative result for B < B*, where
B* is the solution to Problem 1. Therefore, B* can be found using a
bisection search on B, where at each step we solve Formulation 3.
The key to the efficiency of the method is the efficiency with which
Formulation 3 can be solved. Once an autocorrelation sequence
has been found for a value of B = B* a corresponding filter can be
found by several methods (i.e., spectral factorization). We will use
the method suggested by Lemma 2. In order to find P, at the last
step of the bisection method, we replace the semidefinite feasibil-
ity problem in Formulation 3 with the semidefinite optimization
problem of minimizing trace(P) subject to the constraints in For-
mulation 3. A property of many interior point methods for solving
Formulation 3 and this minimization problem is that there is often
very little difference in their computational cost. We demonstrate
an application of Problem 1 in the following example.

Example 1 Here we design a filter to compete with a sampled
and truncated implementation of the filter with a root raised co-
sine frequency response with roll-off factor oo = 0.22. (The same
choice of oo was made for the ‘chip waveform’ in the recent UMTS
proposal for wideband CDMA mobile telecommunications.) We
choose N =4 and L = 49 so that the implemented filter is approx-
imately orthogonal. That filter has a 99% energy bandwidth of
Bp.g9 = 0.13511. By solving Problem 1 for the same values of
N, L and v, using SeDuMi [8], the minimum achievable B g9 was
found to be ~2 0.12914—a reduction of more than 4% over than of
the root raised cosine filter. The power spectra of the two filters
are plotted in Fig. 2. O

An alternative design is to find an orthogonal filter which min-
imizes the delay in the received data subject to a constraint on the
energy bandwidth. That is:
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Fig. 2: Relative magnitude spectra (in decibels) of the designed
(solid) and square-root raised cosine filters (dashed) in Example 1.

Problem 2 For a given v, N and B, find a filter achieving minL
over rg[m], m=0,1,...,L —1, P = PT and L € Z subject to the
constraints in Formulation 3.

Once again we can use a bisection-based search in which Formula-
tion 3 is solved at each step to find the minimal L. For example, the
minimal length filter which achieves the same 99% energy band-
width as the root raised cosine filter in Example 1 can be found in
this way. It has L = 31 which represents a substantial reduction in
delay and in computational requirements.

5. SOME SPECTRAL MASK DESIGNS

Although the percentage energy bandwidth is a convenient mea-
sure of spectral occupation, we lose control over the actual spec-
trum of the pulse shape. Since many communication standards are
specified in terms of a spectral mask which the transmitted signal
must satisfy, an arguably more satisfactory measure of spectral oc-
cupation would be to constrain the power spectrum to lie within a
given spectral mask; i.e.,

My(f) <Rg(e"™) <M,(f), forall f€[0,1/2], (D

for some given mask My(f) and M, (f). Filter design problems
with mask constraints of the form in (7), but without the orthog-
onality constraint, have been formulated as semidefinite program-
ming problems [2,5]. (The mask constraint is not convex in g[]
unless the filter is constrained to have linear phase [2, 5], which
can lead to increased spectral occupation.) Although the mask
constraints in (7) are semi-infinite, they are substantially ‘softer’
than that in (3¢c). If they are violated, a filter exists—it just fails
to satisfy the mask. In contrast, violation of (3c) is catastrophic in
the sense that no filter would exist. In practice, the mask constraint
can be (conservatively) enforced using discretization techniques.

In many applications, filter masks are specified in terms of the
relative magnitude of the power spectrum at different frequencies,
usually on a logarithmic (decibel) scale. If we let py(f) and pu(f)
denote the lower and upper relative magnitude bounds in decibels,
then a problem corresponding to Formulation 3 is:

Problem 3 Given py(f), pu(f), N and L, either find rg[m], m =
0,1,...,L—1, P =PT, and { > 0 such that (3a) and (4) hold and

§10PeN/10 < R (e727) < 10P«N/10) for all £ €[0,1/2], (8)
or show that none exist.

Problem 3 is a semidefinite feasibility problem and can be used as
the sub-problem in a bisection search for the minimal length filter
satisfying a given mask, as we demonstrate below.
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Fig. 3: Power spectra of the filters in Example 2 with the magni-
tude bounds from the IS95 standard.
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Fig. 4: Calculated (lines) and simulated (circles) bit error rates
(BER) against signal-to-noise ratio for the filters in Example 2.
Legend—Solid: designed filter; Dash-Dot: IS95 filter.

Example 2 Here we design a filter to compete with the filter spec-
ified for the chip waveform in IS95. The standard requires a fil-
ter with a £1.5dB ripple in the pass-band f € [0, ], and 40dB
attenuation in the stop-band f € [f,1/2], where f, ~ 0.12 and
[fs = 0.15. The filter chosen in the standard has linear phase, N =4,
and L = 48. Whilst that filter satisfies the spectral mask, it does
not satisfy the orthogonality constraints. Hence, the IS95 filter
can induce substantial ISI even when the physical channel is be-
nign. Therefore, we seek the minimal length filter such that both
the frequency response mask is satisfied and the filter is orthog-
onal. The (global) solution to this problem can be found using a
bisection-based search in which Problem 3 is solved at each stage.
(The analogous problem of minimizing trace(P) is solved at the
final stage.) This resulted in a length L = 51, so orthogonality
is achieved for the price of a mild increase in filter length (from
L =48). The frequency response of the designed filter is shown in
Fig. 3 along with that of the IS95 filter. We observe that the equi-
ripple characteristic associated with conventional linear phase fil-
ters satisfying such masks does not necessarily extend to the case
of minimum phase orthogonal filters. To demonstrate the perfor-
mance improvement due to the orthogonality of the designed filter,
we calculated the bit error rates for binary transmission with en-
ergy E over an additive white Gaussian noise channel with noise
variance Ngo/2. The probability of error can be calculated analyti-
cally [7] and the results are plotted in Fig. 4. Note that for bit error
rates of 103 and 10°® the SNR gains of the designed filter are 1 dB
and 2.4 dB respectively. O

In addition to the minimal length filter problem for a given
mask studied in Example 2, a number of related problems can be
solved in a similar way. For example, for several simple param-
eterizations of the mask, the ‘smallest’” mask such that a filter of
a given length satisfies both the mask and the orthogonality con-
straints (and finding such a filter) can be found in this way.

In practice, spectral masks are enforced on the transmitted
rather than the baseband signal. In this paper, we have neglected
any nonlinear effects in the transmission path so that the mask can
be applied directly to the filter. Adaptations of our approach for
non-negligible nonlinearities are reserved for future work.

6. CONCLUSION

In this paper, we have shown that the design of orthogonal wave-
forms for pulse amplitude modulation can be formulated as a con-
vex semidefinite programme and hence globally optimal wave-
forms can be found in an efficient manner. The formulation was
motivated by the observation that the deployment of baseband dig-
ital signal processors removes many of the physical constraints in
analogue waveform coding applications, and by a desire to exploit
the resulting design freedom in an efficient manner. We demon-
strated the effectiveness of our design technique by designing ‘chip
waveforms’ with improved performance over that of those speci-
fied in recent standards for CDMA-based mobile telecommunica-
tions.

There are many other pulse shape characteristics which can be
incorporated into the semidefinite programmes, including: a) com-
pensation for the effects of the smoothing and anti-aliasing filters;
and b) maximal robustness to timing error [7]. However, there
are a few waveform characteristics which are important in some
communications applications but are functions of the waveform it-
self, rather than its autocorrelation. For example, the strength of
the cyclic autocorrelation coefficients of s[k], and the magnitude of
the envelope variation. An interesting direction for future work is
to examine ways in which such characteristics can be incorporated
into the current design framework.
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