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ABSTRACT 

An important aspect of distinctive feature based approaches to 
automatic speech recognition is the formulation of a framework for 
robust detection of these features. We discuss the application of 
the support vector machines (SVM) that arise when the structural 
risk minimization principle is applied to such feature detection 
problems. In particular, we describe the problem of detecting stop 
consonants in continuous speech and discuss an SVM framework 
for detecting these sounds. In this paper we use both linear and 
nonlinear SVMs for stop detection and present experimental results 
to show that they perform better than a cepstral features based 
hidden Markov model (HMM) system, on the same task. 

1. INTRODUCTION 

We are pursuing an approach to speech recognition that devel- 
ops detectors for various distinctive features from their acoustic 
correlates in the speech signal. Crucial to the success of such 
an approach are the following: (1) determination of the acoustic 
signatures for different sound classes and the development of sig- 
nal representations in which that acoustic signature best expresses 
itself; (2) the construction of statistical learning paradigms that 
operate on the above representations and separate the positive in- 
stances of the distinctive feature from the negative instances of the 
same feature. Traditionally, (1) is regarded as the front-end and (2) 
as the back end of a speech recognition system. In most traditional 
speech recognition designs, the same representation is used for all 
sound classes (i.e., cepstra; filterbanks; computed with the same 
analysis window and stepping rate). The front-end is thus a vector 
time series. The back-end is typically an HMM of one form or 
another. In contrast, we consider using different representations 
for different sound classes. An important question that arises in 
this context is: given a particular representation, what sort of a 
statistical learning machine should be used to optimally separate 
the positive examples of each sound from the negative? 

In this paper, we investigate the application of support vector 
machines (SVM) for the kinds of detection problems that would 
naturally arise in our feature based approach to speech recognition. 
Here, we address the issue of detecting stop consonants in continu- 
ous speech. We first provide a description of the detection problem 
and then discuss support vector machines. 

An important issue that needs to be addressed is the ability of 
the machine to generalize from its training set to its test set. We 
use the Vapnik-Chervonenkis theory [7] that gives rise to SVMs to 
address this issue. We examine a variety of support vector machines 
with different architectures and capacity control mechanisms and 
show their effect on the successful utilization of SVMs for speech 
recognition. Finally, we present experimental results on using 
SVMs for the detection of stop consonants. 

Figure 1: Portion of the speech waveform s(n),(top panel), the 
associated three-dimensional feature vector, x(n) (middle panel), 
and the desired output y(n) bottom panel marking the times of the 
closure-burst transition, x axis is time in msec. 

2. STOP DETECTION 

Stop consonants are produced by causing a complete closure of the 
vocal tract followed by a sudden release. Hence they are signalled 
in continuous speech by a period of extremely low energy (corre- 
sponding to the period of closure) followed by a sharp, broad band 
signal (corresponding to the release). As a result, stops consonants 
are highly transient (dynamic) sounds that have a varying duration 
lasting anywhere from 5 to 100 ms. In American English, the class 
of stops consists of the sounds { p,t,k,b,d,g}. 

In order to build a detector for stop consonants in running 
speech, the speech signal, s(t), is characterized by a vector time 
series with three dimensions: (i) log(tota1 Energy) (ii) log(Energy 
above 3kHz) (iii) spectral flatness measure based on Wiener En- 
tropydefinedasJlog(S(f, t))df - Zeg(s S(f, t)df)where S(f, t) 
is spectral energy at frequency f and time t. All quantities are 
computed using 5 ms windows moved every 1 ms. Thus, we have 
x(n) = [z,(n) ~(12) 23(n)] wheren representstime (discretized 
in units of milliseconds) and 2: i through 2s are the three acoustic 
quantities that are measured every 1 ms. Energies at 1 ms intervals 
potentially allow us to track rapid transitions that would other- 
wise be smoothed out by a coarser temporal resolution. For more 
on stop consonants, their acoustic-phonetic features and common 
confusions, see [4]. 

We need to find an operator on the feature vector time series 
that will return a single dimensional time series that takes on large 
values around the times that stops occur and small values otherwise. 
The most natural points in time that mark the presence of stops are 
the transition from closure to burst release. Shown in fig. 1 is an 
example of a speech waveform s(n), the associated feature vector 



time series x(n) and a desired output y(n). 
The technical goal is to find an operator g on the time se- 

ries x(n) that produces an output yg(m) = g o x(n) with values 
in {O,l}, such that I] y - ys I] is small in some sense (norm). 
Specifically, we choose the optimal operator (from some class 9 
of operators) according to the criterion 

QoPt = argz;R(g) = argmi;E[(y - yg)2] (1) 

Since both y and ys have values in { 0, 1 } , this is a two class, pattern 
classification problem at each point in time n. Here we consider 
operatorsgivenbyyh(n)= h(x(a-W),...,x(n+W))where 
h is a function from Ryzwtl) 4 (0, 1). In our experiments 
w = 5. 

Finally, it is important to emphasize that the speech recognition 
problem can be decomposed into a collection of feature detection 
problems that have a structure very similar to that of the stop 
detection problem described above. For example, a vowel detector 
might be built with a representation x consisting of dimensions like 
degree of periodicity in the signal, ratio of high frequency to low 
frequency energy, and so on. The same is true of a nasal detector, 
a fricative detector and so on. In all of these detection problems, 
the support vector machine framework might provide the basis for 
constructing optimal detectors that are learned from the data. 

3. SUPPORT VECTOR MACHINES 

For a general introduction to using SVMs for the pattern recognition 
task, see [l]. Consider a two-class pattern recognition problem 
with labelled examples, i.e., (Xi, y,) pairs drawn according to 
some unknown distribution P(x, y) on the space X x Y. The 
goal is to construct a function h (drawn from some class H : 
X b Y ; let Y = { - 1, 1) without loss of generality) that is 
able to classify unknown patterns x into the appropriate class with 
minimum misclassification error. A suitable h is usually picked by 
minimizing the empirical risk, i.e., 

This is the straightforward approach commonly pursued in statisti- 
cal pattern recognition and the hope is that the empirically chosen 
function /& would generalize successfully to novel unlabelled ex- 
amples. 

3.1. Structural Risk Minimization 

The straightforward approach of minimizing the empirical risk 
turns out not to guarantee a small actual risk on the test set, par- 
ticularly, if the number 1 of training examples are limited. As a 
result of the work of Vapnik and Chervonenkis [7] (see also [5,6]), 
a new induction principle has emerged, the principle of structural 
risk minimization (SRM). This is based on the fact that the true 
goal of the learner should be to minimize the expected risk, i.e., 

hw = arg f5; R(f) = arg y$ E[(y - f(~))~] 

where the expectation is taken according to the true distribution P. 
Since P is unknown, one approximates the above functional R(f) 
by the following large deviation bound (that holds with probability 
greater than 1 - Q) 

R(f) I kmp(f) + a( ;, y) (2) 

where Q, is defined as @( f , q) = 

parameter d is called the VC-dimension of the set of functions, 
‘H[7] and is a measure of its complexity. Some aspects of eq. 2 
are worth highlighting. First, to guarantee minimization of the 
true risk, R(f), one has to ensure that both terms, Remp(f) and 
a( f, v) are made sufficiently small - significantly, it is noted 
that minimizing Remp alone is not enough. Second, for a fixed 
amount of training data I, the two components represent a com- 
plexity regularization trade-off. As the class ‘H becomes larger, 
the minimum empirical risk becomes smaller but the VC term be- 
comes larger. Generalization is controlled by controlling each of 
these two terms. 

Conceptually this is done by imposing a structure 7-L, c ‘Hz c 
x3. . . ‘H of nested subsets of l-l. One then searches within this 
hierarchy for the class ‘l-l, that minimizes the bound, i.e., 

ji = arg $J-~ @en&f) + a()) (3) 

3.2. Hyperplanes 

Here we discuss the application of the SRM principle to the case 
where the class ‘H is the class of linear hyperplanes in X, i.e., 
‘H = {h : X + {-l,l}]h(x) = B(w.x + a)} where 0(z) = 1 
if z 2 0, and 0(z) = -1 otherwise. Thus each pair (w, b) 
corresponds to a unique hyperplane (after removing an arbitrary 
scale factor in w and b by requiring that min, (w.x, + b] = 1 
where (Xi, y,) are the set of training examples.) Now we use the 
following theorem [7]: 

Theorem 1 Let Bx,,...,xr = {x E X : 11x - a11 < V} (a E X) be 
the smallest ball containing the points XI, . . . , xr, and 

HA = {fw,b = 0 ((W.X) + b) 1 llWll 5 A} (4) 

be a subclass of hyperplanes in canonical form with respect to 
{Xl,..., xr}. Then, NA has a VC-dimension d satisbing 

d 5 V2A2. (5) 

This theorem suggests a natural structure on the set of hyperplanes 
in canonical form. Clearly, ti = UA>O’HA. It is possible to show 
that utilizing such a structure transforms the problem posed in eq. 3 
to 

k = arg$; (Remp(w,b) + Xw.w) 

X trades-off the fit to data with model complexity. 

3.2.1. Separable Data 

For the case, where the data is separable by hyperplanes, the struc- 
tural risk minimization principle attempts to minimize the VC- 
dimension of ‘HA while keeping the empirical risk Remp fixed at 
0. This is equivalent to 

subject to 

1 
min -w.w 

2 (6) 

yt(w.x, + a) > 1 vi (7) 



The ith constraint is satisfied only if the ith data point is correctly 
classified by the hyperplane classifier. Introducing Lagarange mul- 
tipliers for each of the constraints, the Lagrangian is formed as 

qw, b, {a,}) = ;w.w - &(y,(w.x, + 6) - 1) 

The optimal solution lies at the saddle point of the Lagrangian 
and satisfies the following conditions [ 11: (1) differentiating with 
respect to w and setting to 0 yields w* = c, y,(~,x~, i.e., the op- 
timal hyperplane is a linear combination of the training vectors, (2) 
differentiating with respect to 6 and setting to 0 yields c, (~$y* = 
0, (3) first order Kuhn Tucker conditions yield LY, (y, (w.x, + b) - 
1) = 0. From this we see that all points x, for which (Y, is non-zero 
lieonthemarginhyperplanesw*.x+b=lorw’.x+b=-1. 
Such points are called support vectors. All other points are exterior 
points and do not enter in the expansion of the optimal hyperplane 
w* since they have (Y, = 0. As a result of these properties, the 
learning machine is called the support vector machine. 

Substituting for w in the Lagrangian yields the quadratic pro- 
gramming problem, maxx, oi - 4 c,,, ~iytcr,y,(Xi.X,) sub- 

ject to xi o,y, = 0. 

3.2.2. Non-separable Case 

In many practical applications, a perfectly separating hyperplane 
does not exist. To allow for the possibility of examples violating 
(7), [2] introduce slack variables 

to get 

I$, 2 0, i = 1,. . . ,I, (8) 

y,((w.x,) -+ b) 1 1 -&, i = l,..., 1. (9) 
The structural risk minimization approach to minimizing the guar- 
anteed risk bound (2) consists of the following: 

subject to the constraints (8) and (9). 
In eq. 10, the w.w corresponds to the VC-dimension of the 

learning machine as before. The term xf=l(&)E (for small e) is 
equivalent to the number of misclassifications on the training set 
and therefore a measure of empirical risk. The constant U therefore 

controls the trade-off between the empirical risk xf=,(&)C and 
the VC-dimension of the learning machine. In actual practice, one 
has to make choices both for U and c. For computational reasons, e 
is chosen to be 1 because that translates the optimization problem 
of eq. 10 into a quadratic programming problem like that of the 
previous section (in fact, e = 2 does also). Introducing Lagrange 
multipliers for each of the constraints in eqs. 8 (Xi ‘s) and 9 (a, ‘s), 
weformtheLagrangianC(w,{&},b,{o,},{X,})asbefore 

First order conditions show that the optimal hyperplane is given 
by w* = c y,o,x,. Additionally taking into account the Kuhn- 
Tucker cond&ons, eo. 10 is transformed into 
minCt (Ye - i C, 2, (Y,(Y~Y~Y~(x~.x,) subject to c, WYI = 
0; 0 5 o, < U. Once the (Y, ‘s are obtained by solving the above 
problem, the optimal hyperplane is easily found by substitution. 

3.3. Non-linear Extensions: Kernels 

In order to get non-linear decision boundaries, we transform the 
data by a fixed non-linear transformation and use linear techniques 
in the transformed space. Consider a transformation II, : X w Z 
mapping points x, E X to corresponding Z, E Z. Construct- 
ing hyperplanes in Z according to the SRM principle ultimately 
reduces to solving optimization problems of the sort described ear- 
lier (eq. 10) with x,‘s replaced by z,‘s. Significantly, we note that 
the only form in which zr ‘s appear in the optimization problem is 
inner products, i.e., (z,, z, ). Therefore, it is enough to know the in- 
ner product between pairs of them. Consequently, we characterize 
the transformation 1c, by the inner product it imposes on the space 
Z. Specifically, we consider mappings of the form $1~ : X + Z 
suchthatforanyzi,zz E Z,wehave(zi,z2) = K(xt,xl) where 
K is the Kernel of a positive Hilbert-Schmidt operator and accord- 
ing to Mercer’s theorem of functional analysis ([3]) corresponds 
to a dot product in some other space. Each different choice of 
the kernel K defines a different choice of the transformation 4~. 
The dimensionality of Z depends upon the number of non-zero 
eigenvalues of the kernel K and is potentially infinite. 

If we set up the optimization problem appropriately, we see 
that the optimal hyperplane has the form w * = c, yi m:Zs. The 
decision rule for this is: h(x) = 0(x* yio:K(x,X,) + b). We 
see that the form of this decision rule is like a feed-forward neural 
network, or a kernel-based non-parametric scheme with two signif- 
icant differences (a) the parameters are estimated by the principle 
of structural risk minimization (b) the number of “hidden nodes” or 
“basis functions” is chosen automatically by the procedure. Thus 
an important problem of model selection is resolved. 

4. EXPERIMENTAL RESULTS 

As formulated in section 2, stop detection is a two class pattern 
classification problem that can be solved using SVMs. We discuss 
in this section the experiments conducted with these SVMs. Detec- 
tion experiments were conducted on dialect region 4 of the TIMIT 
test set that consists of 32 speakers, 16 male and 16 female uttering 
10 sentences each making for a total of 320 sentences in all. Train- 
ing was performed on 10 sentences each from 4 randomly chosen 
speakers from the TIMIT training set from different dialect regions 
yielding 133 positive examples and 10760 negative examples. 

4.1. Linear Hyperplanes 

In this section we consider results obtained when the class of linear 
hyperplanes is used as a decision boundary between stops and 
non-stops (non-separable formulation). 

On 10893 training data points, with U = I, 163 support vec- 
tors were generated (1.5% of training vectors). The errors on 
the training set consisted of 25 false positives and 37 false neg- 
atives. Shown in fig. 2 is a distribution (normalized histograms) 
of d(x) = w.x + b for the positive and negative training exam- 
ples. As & is the distance of each datapoint x to the separating 

hyperplane d(x) is proportional to this distance. Positive exam- 
ples that have d < 0 and negative examples that have d > 0 are 
misclassified. The region -1 5 d < 1 corresponds to the mar- 
gin, i.e., points that lie within the strip given by the hyperplanes 
w.x+b=landw.x+b=-1. 

As we discussed in section 2, the problem is really one of ac- 
curate detection of stops. Consequently, by changing the threshold 



Figure 2: Histogram of d(z) on the training set. 

Figure 3: Performance of linear support vector machines. 

(currently set at d = 0) one can obtain a trade-off between type I 
and type II errors for the stop detection problem. Shown in fig. 3 
are the ROC curves generated by varying such a threshold of ac- 
ceptance for values of U = 1000,100,10,1,0.2,0.05. U controls 
the trade-off between empirical fit to the data and capacity of the 
learning machine. Performance on the test set (a measure of gener- 
alization) gets progressively better as U decreases over this range. 
The best performance was obtained for U = 0.05. 

4.2. RBF Kernels 

Another important choice in the adoption of the support vector 
framework for problems such as these involves the choice of kernel, 
K. In the experiments below, we considered Radial Basis Func- 

tion kernels of the sort K(x, y) = exp - q. Experiments 
were conducted with values of u = 100,250,500. Performance 
improved marginally from sigma = 100 to d = 500. Shown 
in fig. 4 is the ROC curve for an RBF network with u = 500 
(labeled SVM). Also shown are ROC curves for the best linear 
hyperplane and one obtained using a derivative operator on total 
and high-frequency energies. 

As a point of comparison, the performance of an HMM based 
system running with free grammar on the test sentences is shown 
by the ‘*’ in fig. 4. The HMM based system consisted of 47 
phones with 3 state left to right HMMs per phone. The output 
probabilites were mixtures of Gaussians (16 mixtures per state) 
and the front-end was a 39 dimensional vector time series obtained 
from the first 12 cepstral coefficients and total energy and their 
first and second differences (delta and delta-delta). A stop in a test 
sentence was considered to be correctly identified if the closure- 
burst transition was anywhere within the segment postulated as a 
stop by the HMM recognizer. If a particular segment postulated 
by the HMM recognizer as a stop did not contain a closure-burst 

Figure 4: Performance of linear and non-linear support vector 
machines against derivative operators and HMMs. 

transition, it was deemed a false accept. 

5. CONCLUSIONS 

Stop detection belongs to a class of feature detection problems that 
naturally arise in a feature based approach to speech recognition. It 
is particularly interesting as stops present a transient signal with a 
period of rapid change that is often poorly characterized by standard 
cepstral representations. We have discussed how the problem can 
be cast as trying to discriminate between positive and negative 
examples using functions drawn from the class X of the appropriate 
complexity. We have introduced the principle of structural risk 
minimization that provides a framework for doing this. 

We have discussed the two major issues, the choice of an 
appropriate U and kernel K that affect the successful deployment 
of this technology for detection problems. We have also shown 
a steady improvement from linear to non-linear SVMs and shown 
that they perform better than an HMM using cepstral features. 
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