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ABSTRACT

In the paper, we introduce the concepts of dynamic object identifi-
cation and verification using video. A generalized Hausdor(f met-
ric, which is more robust to noise and allows a confidence inter-
pretation, is suggested for the identification and verification prob-
lem. Parameters from sensor motion compensation procedure are
incorporated into the search step such that the Hausdor{f metric
based matching can be achieved efficiently under more complex
transformation groups. An algorithm is proposed for identifica-
tion/verification based on edge map matching using the general-
ized Hausdor{f metric. Experiments on infrared video sequences
are provided.

1. INTRODUCTION

For many years, object recognition algorithms have been based on
a single image or a couple of images acquired from different as-
pects. While advances have been made for simple constrained sit-
uations such as indoor environment, object recognition in natural
scenes remains a challenging problem. An interesting observation
is that when given a video sequence of a moving object, additional
information can be exploited and thus making object identification
and verification more feasible. In applications such as visual au-
tonomous surveillance, the camera itself is is often moving during
the acquisition process. A typical setup of this kind of problems is
illustrated in Fig. 1. Due to the motion of camera, object identifi-
cation/verification should be carried out only affer a sensor motion
compensation process which removes the unwanted camera mo-
tion.
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Figure 1: A typical setup of identification/verification using video

Dynamic identification and verification are the core tasks of the
problem when a video sequence is available. We use identifica-
tion and verification to mean different operations in this context.
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To be specific, dynamic identification refers to the following prob-
lem: given an image sequence containing the moving object, to
positively identify the object type among a few hypotheses. Iden-
tification is dynamic in that we have a time-evolving scene due to
both sensor and object motion. By using multiframe temporal in-
formation, the identification process has increasing confidence as
time evolves. Dynamic verification is used in a slightly different
situation, which answers the following questions: is this the object
seen in the previous frames? and how confidentam I? This is espe-
cially interesting in the situation of temporary loss of tracking due
to, for example, occlusion by a big tree or other man-made objects.
Dynamic verification is in a sense similar to the tracking problem
but here it emphasizes the verification/rejection of certain object,
rather than just tracking on a few feature points or a region of in-
terest.

In the paper, a generalized L, version of the Hausdorff met-
ric, which is more robust to noise and allows a confidence inter-
pretation, is used for the dynamic identification/verification prob-
lems. An algorithm based on edge map matching using the general-
ized version of Hausdorff metric is then proposed. Experiments on
infrared video sequences are presented. The experiments demon-
strate how the concepts and the algorithms for dynamic identifica-
tion/verification work in real applications.

2. MATCHING BASED ON AN Lp VERSION OF THE
HAUSDORFF METRIC

Hausdorff metric is a mathematical measure for comparing two sets
of points in terms of their least similar members. The metric is de-
fined as the maximum of the minimum distances from all members
of point set A to point set B. Formally, given two finite point sets

A = {a1,a2, - ,ap} and B = {b1,ba, - -, by}, the Hausdorff
distance is defined as
H(A, B) = max{h(A, B), h(B, A)} M
where
h(A, B) = 1 —b 2
(A, B) :gggglla Il @
and ||.|| is an underlying norm between two points.

2.1. Some Modified Versions of Hausdorff Distance

Although theoretically attractive, Hausdorff metric H is not directly
usable in practice, because the sup or max operation in the defini-
tion makes h and hence H very sensitive to noise — a single noisy
point can pull the value of H far from its noise-free counterpart.



Some modifications have been proposed in applications. For ex-
ample, in [2], a weighted sum version was proposed and found to
slightly improve the recognition rate; and in [3], a K —th ranked
partial “distance” h( A, B) was used to detect a model in a static
scene. The same partial “distance” was also used to track people in
[4]. Although these modifications improve the robustness in prac-
tice, the obtained “distance” (a weighted one in [2] and a K -th ranked
one in [3]) is no longer a metric. That is to say they are not real dis-
tances in the strict sense. We argue that being a metric (i.e. obey-
ing the axiomatic rules for metric) is important because when doing
identification or verification, generally we have several hypothe-
ses, and we need to use a measure that can reflect the confidence
of choosing certain one over the others. This is not like detection
or tracking, where one only needs to find an optimal match for a
given mask. For example, it’s easy to construct examples where a
partial distance does not really give a measure of similarity between
point sets. Although those examples are unlikely to come out of an
edge detector, one does face difficulties when the models are rela-
tively simple point sets (with not too many points) while the scene
is highly cluttered. Therefore, the above-mentioned modified ver-
sions of Hausdorff distance do not necessarily offer a good measure
for comparison among different models.

2.2. An L, Version of the Hausdorff Metric

By using Lipschitz inequality, another well-known representation
of Hausdorff metric in Eqn. 1 can be obtained as ( see [8] )

H(A,B):IIIIGa))((|p($,A)—p($,B)| (3

where X is a set and p a metric such that (X, p) is a metric space,
and A € X and B € X. In the image analysis context, X is simply
the set of all the image grid points, and p is usually the L, norm,
while A and B are edge maps from intensity images.

To alleviate the unstableness in Eqn. 3 due to the sup opera-
tion, Baddeley has suggested an L, average [1] as follows:

1/p
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where n(X) is the number of points in X, and 1 < p < oo.
So defined H?(A, B) is still a metric, and topologically equiva-
lent to H(A, B), but is more robust to noisy data since the contri-
bution of a single point has been weighted. Also, by using the aver-
age, Eqn. 4 has an “expected risk” interpretation: given A, a set B
which minimizes H” (A, B) is that which maximizes the pixelwise
likelihood of {p(z, A) = p(z, B)} (if A and B are treated as ran-
dom sets). In applications, a cutoff function w(t, c) = min{t, c},
for a fixed ¢ > 0, is incorporated into Eqn. 4 to give

1/p
H(A, B) = | s Z)j( fw(p(x, A)) = w(p(x, B))I?
(%)

The resulting H?( A, B) is again a metric, and topologically equiv-
alentto H(A, B).

2.3. Identification/Verification with 7 ”

Given two point sets, H? provides a similarity measure between
them. When this idea is applied to identification/verification prob-
lem, we are concerned with not only how good the match is but

also where the match happens in the scene. It would be meaning-
less to compute H” betweena small model and a large scene image.
Instead usually a region of interest (ROI) is detected first, and the
matching is carried out between the ROI and the model. In partic-
ular, in identification problems, given the edge map R of an ROI
from the scene image and m models M;, 1 = 1,...,m, the task is
to find a model M; and a transformation 7' € 7 such that

P — m : .
HY(R, M;) = min min H (R, M) ©

where 7 is an allowed transformation group for the application.
Such M; will be regarded as the potential object appeared in cur-
rent scene. Since H? is a metric, we can also interpret the values
HP(R, M;),i = 1,...,m as a measure of confidence of choosing
M; at current frame. If m = 1, then the problem is reduced to de-
tecting an object in the scene; if further the model is extracted from
earlier frames in the sequence, the problem reduces to only tracking
and verification.

It is easy to do the search over 7 When T is the translation
group. However it is hard to consider other transformation group
such as affine. Even if we consider only rotation and scale, the
search becomes a daunting task. In the next section, we give an
approach which allows more complex transformation without re-
quiring full search in the transformation space.

3. DYNAMIC IDENTIFICATION/VERIFICATION USING
VIDEO ACQUIRED BY A MOVING PLATFORM

In applications such as surveillance, the imaging sensor is typically
ofinfrared type in order to operate at night, and the video sequences
usually suffer from high levels of egomotion and are often obtained
in poor conditions including low light and low resolution, which
make feature detection hard and unreliable. The sensoris typically
far away from the objects, and the objects are usually small. There-
fore only the contour is relatively reliable, and hence the internal
edge pixels are generally not considered.

3.1. A Framework for Detecting, Tracking and Segmentation

In [5], an algorithmic framework was proposed which integrates
image sequence stabilization, moving object detection and segmen-
tation, object tracking approaches, and forms a front-end of the au-
tomatic target recognition system. Given a sequence, the segmen-
tation step in [5] provides an ROI, which is based on the motion
analysis of the moving object. Stabilization is based on an affine
transformation to model the sensor motion [7]. That is, the trans-
formation between pixels of frame & and frame & + 1 are defined

by
T T2 Ty
P, = P 7
1 <T21 T22) 0+<Ty) (7
where Py = (2o, yo)T and Py = (21, yl)T are pixels of frame &
and frame k + 1 respectively.
Segmentation greatly facilitates matching: recall from Eqn.5,
a supporting set X is needed for computing H?. In practice the
smaller X is, the less computation is needed. It is desired that X
is the smallest region covering the potential object. Segmentation

not only provides a small ROI as X but also greatly decreases the
search region for the min operation in Eqn. 6.



3.2. Allowing More Complex Transformation Groups

In Eqn. 6, we need to search within a transformation group to find
the best match. However, except for the translation group, search-
ing in other transformation groups is generally not feasible. Based
on the sensor motion compensation described in previous section,
we can avoid searching for other transformations except transla-
tion. For example, when doing verification, we can first estimate
the scaling from a model to the scene using the size of the ROI (this
step, however, needs to account for the inaccuracy in the segmen-
tation step), then use the affine parameters in Eqn. 7 to warp the
models, followed by a search over translation group. A simpler ex-
ample is when the sensor has fast looming motion towards the ob-
jects In this situation, without using affine transformation, we can
assume that the object is subject to a scaling with the scale factor s
estimated from the affine parameters as

_ \/@1 +riy + 3 + g (®)
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3.3. Excluding Clutters In the ROI

The detected ROI contains not only the potential object but also
background clutter. According to Eqn. 5, every edge pixels within
the ROI will contribute to H? (A, B), which is unreasonable. When
doing identification, the following technique is used to exclude clut-
ters before calculating H?: given a model M and an ROI R, we
keep those points in ROI only if they are within certain distance of
T(M). Here T'(M ) means the M has been subject to a transfor-
mation 7. Thatis, a new ROI R’ is formed by

R' ={z:Vo € R and p(e, T(M)) <t} ()

where ¢ is a small positive number. On the other hand, if we are do-
ing verification, the model is typically itself an ROI from previous
frames. In this situation, the motion boundary estimated in [5] will
be used as M in Eqn.9, and due to the inaccuracy of the boundary,
a larger ¢ should be used.

3.4. Interpreting H” As A Confidence Measure

The nice properties of H? allow a confidence interpretation. For
the identification problem, this means at each step the H” value
for each model is treated as a measure of confidence in choosing
a certain model: the smaller this number is, the more confident we
are of choosing the model. If multiple models are kept as frames are
processed, although at some time we may make the wrong choice,
the future updates of the confidence level will hopefully provide the
right choice.

For the verification problem, a confidence interpretation is also
helpful: whenever we notice a sharp decrease in confidence, what
may have happened is that the object is no longer the previous one,
or the orientation of the object has changed dramatically. The in-
formation can be used to update the model hypotheses. Verifica-
tion, in this regard, is similar to a tracking problem like in [4], with
the following distinctions:

o the object is detected by motion analysis rather than specified
by a human being;

o the camera is subject to motion;

o the object is small and can not provide dense edge informa-
tion (thus only using a partial “distance” inevitably results in a lot
of false matches).

4. EXPERIMENTAL RESULTS

We tested the algorithms on sequencesacquired by an infrared cam-
era mounted on a helicopter flying towards a tank. Due to the heli-
copter motion, the scaling becomes significant within a few frames.
Fig. 2 illustrates the verification procedure. A moving objectis first
detected by the method proposed in [5], then an ROI is formed and
processed to get the edge map. This edge map, used as the model,
is verified in subsequent frames. In Fig. 2, the ROI from frame 302
is superimposed on frame 310, 315, and 320, respectively, after the
locations have been estimated using Eqn. 6. Note the substantial
scaling of the object ( typically a scale factor 1.02 is obtained by
Eqn. 8 for two consecutive frames ). However, by compensating
the scaling using Eqn. 8, the algorithm is able to locate the tank
and report small H? values ( meaning high confidence ). In exper-
iments presented in this paper, p and ¢ in Eqn. 5 are fixed as 1 and
4 respectively, and ¢ in Eqn. 9 is 5. The edge maps were detected
using Canny’s algorithm [6].

Fig. 4 shows how identification works. Three hypotheses are
provided, with the ground truth being model 2. One can see from
the figure that, although in some frame the algorithm reports false
identification result, overall the confidence of choosing the model
2 is higher than choosing the others. To see this more clearly, we
plotted in Fig. 3 the H¥ value for each model from frame 318 to
327. The overall confidence over model 2 is obvious.
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Figure 2: Dynamic verification with H? metric: a moving object
is first detected and its edge map is used in following frames for
verification purpose.

5. CONCLUDING REMARKS

The experiments demonstrate how the concepts and algorithms for
dynamic identification/verification work on the real video. It should
be pointed out that it has been implicitly assumed in the above anal-
ysis that the motion is two-dimensional. For example, in the exper-
iments, the models are planar silhouettes, and the motion is mainly
translation and scale, although the approach can also handle affine
group as long as the stabilization step provides the correct param-
eters.

Unfortunately, using the planar points model, the group of trans-
formation has to be limited to planar transformation group. Gener-
ally speaking, the six-parameter affine transformation will not be
able to bring a 2-D model into alignment with the scene if the 3-D
motion induced by either the moving target or the sensor is so dra-
matic that no planar motion model is a good approximation. This
situation is worsened if the frame rate is low while the sensor mo-
tion is fast, which means that the scene will suffer from larger 3-D
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Figure 4: Dynamic identification with H? metric: at each frame the models are compared against the detected ROI, and the H? values are

used to as a measure of the confidence of choosing certain model.

0.7 ! ,
—— for model 1
— for model 2
0.6 —. for model 3

o nd
) (3]

Computed Lp Hausdorif distance
o
w

o
o)
©

322 324 326
Frame index

320 328

Figure 3: H? values v.s. frame indexes : from frame 318 to 327.

changes within only a few frames. To handle this kind of situation,
information about the relative pose between the camera and the ob-
ject should be estimated so that a dynamic model can be generated
after the confidence on current hypotheses become too low. The
motion trajectory of the object readily provides certain constraints
on the relative pose, and other information is still needed to get ac-
curate pose estimates. We are currently working on this problem.
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