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ABSTRACT 

Multichannel sensor array processing has received considerable at- 
tention in many important areas of signal processing. Almost all 
data recorded by multisensor instruments contain various amounts 
of noise, and much work has been done in developing optimal 
processing structures for estimating the signal source from the 
noisy multichannel observations. The techniques developed so 
far assume the signal and noise processes are at least wide-sense- 
stationary so that optimal linear estimation can be achieved with 
a set of linear, time-invariant filters. Unfortunately, nonstation- 
ary signals arise in many important applications and there is no 
efficient structure with which to optimally deal with them. While 
wavelets have proven to be useful tools in dealing with certain non- 
stationary signals, the way in which wavelets are to be used in the 
multichannel setting is still an open question. Based on the struc- 
ture for optimal linear estimation of nonstationary multichannel 
data and statistical models of spatial signal coherence, we propose 
a method to obtain an efficient multichannel estimator based on 
the wavelet transform. 

1. INTRODUCTION 

The estimation of signals in the presence of noise is an impor- 
tant problem in communications and signal processing. The use 
of measurements taken from an array of receiving sensors or mul- 
tichannel measurements can considerably enhance signal estima- 
tion. In the array setting, beamforming is performed depending on 
the placement of the sensors with the goal of achieving a gain in 
the signal power over the noise variance via partially coherent, co- 
herent, or noncoherent combining [ 11. In the multichannel setting, 
the gain in the quality of the signal estimate is due to the prop- 
erties of the statistical characteristics of the channel (independent 
noise realizations on each channel or independent fading commu- 
nication channels, for example). Optimal linear estimation in the 
sense of minimizing mean square error is achieved by the Wiener 
filter, which requires the second-order statistics (both temporal and 
spatial) of the signal and noise. If the signal and noise processes 
are wide-sense stationary (WSS), then the optimal linear estimator 
can be realized efficiently with time-invariant, linear filters. Un- 
fortunately, in many situations of interest the WSS assumption is 
not valid. For example, the desired signal may correspond to a 
friendly satellite signal in the presence of hostile jammers, and 
it is very likely that the second-order characteristics may change 
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with time. This can happen because of physical motion, deliber- 
ate on-off jamming strategies, or other intentional nonstationary 
interference generated by the smart opponent [11: In such situa- 
tions, estimation techniques based on WSS signal assumptions are 
clearly inadequate. 

Wavelets have rapidly become an indispensable tool in deal- 
ing with nonstationary signals in an efficient manner. One of the 
key properties underlying the success of wavelets is that they form 
unconditional bases for a large class of signals [4]. Consequently, 
wavelet expansions tend to concentrate the signal energy into a 
relatively small number of large coefficients, making it particu- 
larly attractive in signal estimation. The use of wavelet transforms 
in denoising single channel observations is well studied, but there 
are issues that arise in applying denoising techniques in the case of 
multichannel or array measurements. Clearly the way in which the 
wavelet transform is used will depend on how the desired signal 
component is related between the measurements. The signal com- 
ponent may not be perfectly coherent between sensors; in fact, the 
signal may have reduced coherence due to the complexity in the 
propagation of the signal from the source to spatially separated 
receivers [7]. 

In this paper we illustrate the use of wavelet-based estimation 
techniques in the case of multichannel data. We consider several 
types of multisensor environments including those in which the 
desired signal (possibly nonstationary) has full, partial, and no co- 
herence between sensors by generalizing a model for partial signal 
coherence from the area of array signal processing. In Section 2 
we briefly review estimation with wavelets and the connection to 
Wiener filtering in the single channel setting. In Section 3 we dis- 
cuss optimal linear estimation for partially coherent measurements 
in the multichannel setting and in Section 4 we propose a method a 
multichannel denoising method. We show that under certain con- 
ditions, the multichannel estimator can be realized efficiently with 
only discrete Fourier transforms and wavelet transforms. 

2. SINGLE CHANNEL WAVELET-BASED ESTIMATION 

The standard estimation problem is to recover the discrete-time 
signals(k), k = 1,2,. . , N from the noise-cotruptedobservation 

z(k) = s(k) + n(k), k = 1,2,. . . , N (1) 

where n(k) is zero-mean white Gaussian noise of variance a’. 
Let x, s, n denote N x 1 column vectors containing the samples 
ofz(k),s(k), andn(k) respectively,andlet W denotean N x N 
orthonormal wavelet transform matrix [2]. In the wavelet domain 



(1) becomes 
o=y+z (2) 

with 0 = Wx, y = Ws, and z = Wn. Note that an orthonor- 
ma1 wavelet transform will map n to a z that is likewise zero-mean 
white Gaussian with variance u* while compacting typical signals 
s into a small number of large wavelet coefficients in y. A rea- 
sonable approach to wavelet-based signal estimation is to zero out 
the small entries of 0 which are most likely due to the noise (and 
where the signal is not) while retaining the large entries which 
are most likely due to the signal; such an approach is known as 
wavelet denoising. The motivation for processing the coefficients 
individually is that the wavelet transform tends to decorrelate the 
data; that is, it acts like a Karhunen-Loeve (KL) transform. The 
retain/discard operation can be viewed as a diagonal filtering op- 
eration in the wavelet domain. Let us represent the filter by 

H = dzag [h(l), h(2), . . . , h(N)]. (3) 

The signal estimate based on the wavelet domain filtering is then 
given by 

B = W-‘HWx. (4) 

The wavelet-based signal estimate in (4) can be viewed as an ap- 
proximation to the optimal linear estimator, the Wiener filter, which 
employs the signal-dependent KL transform (instead of the general 
purpose wavelet transform) and uses optimal weighting depending 
on the signal statistics (instead of simple thresholding) [6]. 

There are two different flavors for the filter: hard and soft 
thresholds [4]. The technique described in this paper employs hard 
thresholding, in which case the filter coefficients are given by 

There are many choices for choosing the threshold; we will use the 
“optimal” threshold proposed in [.5]: 

T = ~&l(N) (6) 

where N is the number of samples collected and CT* is the noise 
variance. 

3. MULTICHANNEL WIENER FILTERING 

Let us now consider the case where we have measurements from 
iVf spatially separated sensors. Further, let us assume for simplic- 
ity that there is only a single signal component and that the sensor 
observations have been appropriately time-aligned. In a linear ar- 
ray configuration with uniform spacing d, velocity of wave prop- 
agation c, and a signal arrival at angle 0, we would need to time 
shift the ith sensor observation by D, = izsin(6) to time-align 
the observations. Methods for estimating the angle of arrival are 
described in [8] in the WSS setting and [9] in the nonstationary 
setting. Now dealing only with the aligned sensor observations, 
let us denote the N-sample measurement at the ith sensor by the 
z,(k), k = 1,2 ,..., N. In general, each sensor observation will 
consist of a component due to the desired signal and a component 
due to undesired noise; that is, z,(k) = s,(k) + n,(k) where s, 
is the signal and n, is the noise. In many instances, the noise may 
be modeled as zero-mean white Gaussian noise and is assumed to 
be uncorrelated between sensors. It is convenient to arrange the 

sensor measurements in vector form with the stacked 2lfN x I 
column vector 

X T=[zy5:...2Q (7) 

where each Z, is an N x 1 column vector. Similarly, let s and n 
denote the MN x 1 column vectors of the signal component and 
noise component, respectively. 

Simultaneously enhancing the signal and suppressing the noise 
in an optimal fashion by intelligently combining the sensor mea- 
surements and applying an appropriate set of filters requires knowl- 
edge of the second-order statistics of the signal and noise. While 
we will not require an exact second-order statistical characteti- 
zation of the signal and noise, the structure of their correlation 
matrices will be important. Let the MN x MN matrix Qs = 
E[ssT] denote the correlation matrix of the desired signal. Since 
the MN x 1 vectors contains the N-sample signal components as 
its M blocks, Qs can be viewed as an M x M block matrix with 
the (i, j) th subblock being the N x N cross-correlation matrix be- 
tween the signal component at the ith and jth sensors, which we 
denote by R,, s,. That is, 

r Rs,s, Rs,,, R,,,, . . . 

Qs = R,,,~ FL,,, R,,,, . . . 
; 

(8) 
. . . . . .., 

tR Sf$,fSl ... 
. . . . . . 

If we assume that the noise is zero-mean Gaussian with variance 
u* and white both temporally and spatially, the MN x MN noise 
correlation matrix across the sensors becomes Q,, = E[nnT] = 
a’1 where I is the identity matrix. The optimal linear estimator 
$ = Gx that minimizes the mean square error Ells - gj]’ is the 
Wiener filter [3] 

G w = Qs(Qs + a*I)-‘. 

4. WAVELET-BASED MULTICHANNEL ESTIMATION 

As given, the Wiener filter in (9) requires knowledge of both the 
spatial and temporal correlation structure of the signal. Even if 
these were known, for nonstationary signals the matrix Qs is not 
Toeplitz-symmetric and there is no efficient, structured implemen- 
tation for (9). Wavelets have become increasingly popular tools to 
deal with nonstationary signals in an efficient manner. Recall that 
a key property of the wavelet transform is that it approximates the 
KL transform for a large class of signals. Therefore, to see how we 
may use wavelets in the multichannel setting, we need to examine 
the spatio-temporal structure of the multichannel KL transform. 

The multichannel KL transform is defined through the eigen- 
expansion of QS: 

kc1 

where Np 5 MN is the rank of QS, u;s are the eigenfunctions, 
and XL s are the corresponding eigenvalues of Qs. The MN x Np 
matrix U denotes the eigenvectors stacked next to each other; that 
is, U = [ui, u2,. . . , UN,]. The matrix UT is the KL transform 
for the multichannel signals since it decorrelates, or diagonalizes, 
the correlation function QS and concentrates the signal energy into 



the smallest possible subspace. We may refer to such a KL trans- 
form as the spatio-temporal KL transform because it decorrelates 
the multichannel signal both in time and space. 

To provide a structured implementation of the multichannel 
estimator, we need to examine the interplay between the spatial 
and temporal contributions to the structure of the spatio-temporal 
KL transform. Coherence loss will be accounted for by introduc- 
ing a decorrelation between the time-aligned sensor signals. An 
exponential power law model has been suggested in the literature 
[7], whereby the signal cross-correlation matrix between the ith 
and jth sensors will be scaled by the coefficient 

C ,, = +i+, 

where L is a dimensionless characteristic correlation length ex- 
pressed in element spacing units that can be chosen to model a 
specific environment. That is, E[s~s;] = R,,,> = c,,R, where 
R, is the correlation matrix of the signal source. This intuitively 
satisfying model gives an exponential decrease in cross-correlation 
with increasing sensor separation. We will not restrict ourselves to 
the exponential model; rather, we will allow the decorrelation co- 
efficients to be arbitrary with the only restriction that c,, 2 1. We 
may arrange the signal decorrelation coefficients in matrix form as 
C = {ctJ}. Observe that this model for partial coherenceincludes 
as special cases the coherent environment (cij = 1 Va, j) and non- 
coherent environment (C = I). With this assumed decorrelation 
structure, we may write the block form of the correlation matrix of 
the time-aligned multichannel signal s given in (8) as 

r CIIFL cnRs ciaRs ... cl~Rs 1 

Qs = ~1% ~22% c23Rsssg . . . 

1 : . . . . . . . . 
cMIRs . . . . . . . . CM-M% 1 

(12) 
This may be expressed more compactly as a Kronecker product: 
Qs = C @ R,. We can obtain spectral decompositions for the 
M x M spatial decorrelation matrix C and the N x N signal 
source correlation matrix R, with 

(14) 
kc1 

where N, 5 M is the rank of C’ and N, 5 N is the rank of R,. 
Let us stack the eigenvectors of C in the M x N, matrix UC = 

[UC1 UC2 . . UC& ] and the eigenvectors of R, in the N x N, ma- 
trix us = [us1 US?.. . USN. 1. The matrix US defines the tempo- 
ral KL transform for the signal source s(k), k = 1,2, . . . , N. Us- 
ing elementary properties of Kronecker products [lo], the eigen- 
vectors of Q s in (10) are given by 

u* = UC, @ U8k (1% 

fori = 1,2 ,..., N,N,, j = I,2 ,..., N,,k = I,2 ,..., N,. 
We can also write the stacked matrix of eigenvectors for Qs in 

1 In general NC = M except in the case of a perfect signal coherence 
between sensors in which case NC = 1. 

Kronecker form as U = UC @J Us. This states that the spatio- 
temporal KL transform may be decomposed via a Kronecker prod- 
uct into the spatial KL transform and the temporal KL transform. 

Now it is most likely that the matrix C (the spatial character- 
istics of the sensors) is either known a priori from characteristics 
of the medium or can be reliably estimated with transmission of a 
pilot signal. However, the temporal correlation structure of the sig- 
nal source is not known in many important problems. In addition, 
if the signal is nonstationary, then its correlation matrix cannot be 
estimated from a single realization of the process as can be done in 
the WSS case. Since the wavelet transform approximately decorre- 
lates and concentrates the signal energy in a relatively small sub- 
space, it can serve as an approximate KL basis for a broad class 
of signals [2]; that is, we can substitute an appropriate N x N 
orthonotmal wavelet transform matrix W for the signal source’s 
temporal KL transform Uz. 

Recall that the first step in the Wiener filter is to process the 
multichannel observation x with the spatio-temporal e transform 
for s via UT = Us @Ug. Let us substitute the wavelet transform 
matrix for the signal source’s temporal KL basis and denote the 
transformation with 

O=(UT,@W)x (16) 

In effect, we spatially decorrelate exactly and temporally decor- 
relate approximately, allowing us to denoise the multichannel ob- 
servation x. If we let the set of N, x 1 column vectors {vk)& 
denote the columns of Uz (the rows of UC), then recalling the 
block form of x* = [zT zT.. . zL] we may express 0 as 

M 
O=C vk 8 (wlk). (17) 

k=l 

Letting u,~ denote the (i, j)th element of UC, we may express 0 
in the form of N, blocks as 0 = [0i 0s . . . ON,] with each 8, of 
size N samples. From (17) we have 

e3 = w& u,,x,) 3 = 1,2,. . . , Nc (18) 
*=l 

We recognize the term c:, u,~x, as the jth subblock of the ma- 
trix product Uzx. Since Uz is a diagonalizing matrix for C, we 
see from (18) that the structure of the wavelet appro;uimation to the 
KL transform for s is to first decorrelate the M-channel observa- 
tion x, producing N, channels which we then wavelet transform 
with W. The next step in the wavelet estimation technique is to 
process each Bt with a thresholding filter as in (5) and then in- 
verse transform back to the time domain. Knowing the wavelet 
approximation to the forward KL transform UT, the structure of 
the wavelet approximation to the inverse KL transform is straight- 
forward. The structure of the wavelet-based estimator is shown in 
Figure 1. The question that remains is how to choose the thresh- 
olds for the N, diagonal filters. Recall from (6) that the value of 
the threshold should be chosen based on the noise variance and the 
number of samples. Due to the unitary nature of Uz, the noise 
variance on each channel after spatial decorrelation remains at u* ; 
therefore, the thresholds on each of the filters should be chosen as 
in (6). 

It is interesting examine how the structure of the wavelet-based 
estimator simplifies in the cases of a perfectly coherent and com- 
pletely noncoherent signal between sensors. In the noncoherent 



(b) 

Figure 1: Wavelet-Based Multichannel Estimators: (a) Partially 
Coherent and Noncoherent (UC = I and NC = M) Environment 
(b) Coherent Signal Environment 

case, the signal component is uncorrelated between the multichan- 
nel measurements, implying that C = I, the M x M identity 
matrix. In this case the matrix whose columns are the eigenvectors 
of C is also the identity matrix. Therefore, no matrix preprocess- 
ing of the sensor observations are required before taking wavelet 
transforms. In the completely coherent setting, the signal compo- 
nent is statistically identical at each sensor. In this case, C is a 
rank-l matrix of all ones, and the matrix UC is an M x 1 col- 
umn vector where all the elements are equal to -&. Therefore, 
spatially decorrelating (and including the scaling factor from the 
recorrelation) reduces to simply averaging the observations. There 
is then only one channel to wavelet transform and threshold. These 
estimation structures are also shown in Figure 1. 

It is worth noting an approximation we can make to efficiently 
realize the first step in our proposed estimator, the spatial decor- 
relation via U’,. For this we first note that UC diagonalizes the 
decorrelation matrix C which itself is Toeplitz-symmetric. If we 
assume that C is a finite-order Toeplitz matrix in the sense that 
C ,J = 0 for 12 - ~1 large enough, then it is known that the eigen- 
value distribution of such a matrix asymptotically approaches the 
discrete Fourier transform (DFT) of its first row as the dimension- 
ality M grows large [ 111. Physically, this says that if we have a 
large number of sensors and the decorrelation characteristics are 
such that there is complete coherence loss beyond a certain sensor 
separation, then the DFT matrix can be substituted for Uz (and 
the inverse DFI matrix can be substituted for UC), approximately 
decorrelating the sensor observations spatially; the advantage be- 
ing of course that efficient algorithms exist to compute the DFT 
and that the exact form of the decorrelation structure between sen- 
sors need not be known. 

5. SUMMARY 

channel Wiener filter) and models of the spatial coherence of the 
signal, we identified the contributions of the spatial and temporal 
signal correlation to the structure of the estimator. Specifically, 
we found that we were able to decompose the spatio-temporal KL 
transform for the multichannel signal into the spatial KL trans- 
form and the temporal KL transform via a Kronecker product. 
An appropriate wavelet basis was used to approximate the signal 
source’s temporal KL basis, the advantage being that the wavelet 
basis is independent of the specific signal statistics and that fast al- 
gorithms exist to compute the discrete wavelet transform. Our pro- 
posed multichannel estimator first removes spatial redundancy by 
spatially decorrelating the signal across the sensors which, under 
certain conditions, can be approximately carried out via a discrete 
Fourier transform. The resulting decorrelated sensor observations 
are then each wavelet transformed and passed through a diagonal 
filter which discards coefficients below a threshold that depends 
on the noise variance while retaining the coeffidents above the 
threshold. The thresholded coefficients are then inverse wavelet 
transformed and spatially recorrelated to produce the’multichan- 
nel signal estimates. 
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