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ABSTRACT

Solutions to the analytic Bezout equation associated
with certain multichannel deconvolution problems are
interpolation problems on unions of non-commensurate
lattices. These solutions provide insight into how one
can develop general sampling schemes on properly cho-
sen non-commensurate lattices. We will give specific
examples of non-commensurate lattices, and use a gen-
eralization of B. Ya. Levin’s sine-type functions to de-
velop interpolating formulae on these lattices.

1. INTRODUCTION

Linear, translation invariant systems (e.g., sensors,
linear filters) are modeled by the convolution equation
s = f % p, where f is the input signal, p is the sys-
tem impulse response function (or, more generally, im-
pulse response distribution), and s is the output sig-
nal. We refer to it as a convolver. In many applica-
tions, the output s is an inadequate approximation of
f, which motivates solving the convolution equation
for f, i.e., deconvolving f from p. If the function
is realizable, i.e., time-limited (compactly supported)
and non-singular, we have shown that this deconvolu-
tion problem is ill-posed in the sense of Hadamard (see
[7]). A theory of solving such equations has been de-
veloped (see [1]-[7]).
using a multichannel system. If we overdetermine the

It circumvents ill-posedness by

signal f by using a system of convolution equations,
§; = f*p;,i=1,...,n, the problem of solving for f
is well-posed if the set of convolvers {1;} satisfies the
condition of being what we call strongly coprime. This
condition, among other things, gives that the Fourier-
Laplace transforms f#; have no common zeros. Thus, in
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a strongly coprime system, no signal information is lost.
Additionally, it guarantees the existence of compactly
supported distributions (deconvolvers) v; , i =1,...,n
such that i -7y + ...+ [, - Uy, = 1. Transforming, we
get g * vy + ...+ pp * U, = 6, which in turn gives
S$1%11+...+8,x1, = [ . The deconvolvers are inverse
transforms of solutions to the analytic Bezout equation,
i.e., for given holomorphic f; and ¢ satisfying certain
growth conditions, holomorphic g; satisfying the same
growth conditions such that f, - g1+ ...+ fr - gn = @.
For our purposes, we want growth conditions given by
the Paley-Wiener-Schwartz Theorem and ¢ = ¢, with
¢ — 1 as A — oo (¢, is the transform of an approx-
imate identity). This theory is developed in detail in
[6, 7.

The multichannel theory of deconvolution is inti-
mately tied to the theory of sampling. This connection
is not surprising. Basic sampling theory allows us to
apply deconvolution to sampled band-limited signals,
performing a deconvolution and a signal reconstruction
in one processing step (see |7]). Moreover, the heart of
the multichannel theory involves solving an interpo-
lation problem, reconstructing (generalized) functions
(the deconvolvers) in a space of restricted growth (£)
from discrete data (their values on the zero sets of the
convolvers). This gives solutions to the Bezout equa-
tion (see [6, 7]). This development utilizes the zero sets
of the [1; as different sampling rates.

The purpose of this note is to show how this connec-
tion between sampling and multichannel deconvolution
naturally leads to sampling schemes on properly cho-
sen non-commensurate lattices. We will then give spe-
cific examples of non-commensurate sampling lattices,
and use a generalization of B. Ya. Levin’s sine-type
functions to develop interpolating formulae on these
lattices. We close by presenting simulations of these
results.



2. SAMPLING AND THE BEZOUT
EQUATION

A key step in the development of multichannel sys-
tems is the solution of the Bezout equation fig - 7 +
.+ fiy Uy = @, where ¢ = ¢y, with ¢y — 1 as A — oo.
This is, given the data (values of the [i;, especially the
location of the zeros), a sampling problem. We can
easily write down a solution to Bezout at those zeros.
The problem now becomes one of interpolation. We
need to interpolate the 7; between these zeros so that
they satisfy the necessary growth conditions. There are
currently two approaches used to solve these problems
— complex methods (Jacobi interpolation formulae and
Cauchy residue theory) or real methods (sampling the-
ory).

The development of the deconvolvers v; via the Ja-
cobi interpolation formulae and Cauchy residue the-
ory is now a well-developed tool, given the theoretical
base established by Berenstein, Gay, Taylor, Yger, et
al. ([1]-6]). Tt has a flexibility in the one-variable case
that allows for its use in not only general deconvolu-
tion problems, but also in the development of filters,
etc. The key to this is the flexibility of the Cauchy
residue calculus in one-variable. As is well-known, the
story in several variables is different. Berenstein, Gay,
Taylor, Yger, et al. have given us working formulae
for specific situations. There are no general formulae
in several variables for the computation of the needed
residues.

Sampling lies juxtaposition these methods. It does

not have the tremendous flexibility of the complex meth-

ods in one variable, but it also does not carry with it
comparable computational difficulties in several vari-
ables ([6, 7, 10]). We will later use these techniques to
develop non-commensurate sampling lattices. In this
section, we cite two concrete examples in which sam-
pling theory was used to solve the Bezout equation,
which in turn gave us the deconvolvers.

Let ¢t € R, p be a prime number, and let py(t) =
Xi-1,y(t) 5 pa(t) = X 5,5 (f) model the impulse re-
sponse of the channels of a two-channel system. Then

m(g):ﬂfg—Q’ @(():M.Le‘uz — [

Zy = {2\/_} for k € N denote the zero sets of [i1({),

712(€), respectively. An examination of the Fourier-
Laplace transforms [i;(¢), i = 1,2, gives that {u;} is
strongly coprime (see [3]). We choose an arbitrarily
close approximation 7 of the Dirac § based on certain

criteria, i.e., ¥ in C* with support in (—(1 -+ /p), (1 +
vP))- Then [¥(2)| < (1—+C’%’)—4 for z € 2, U Z,5. The

smoothness and the size of the support of ¥ guarantee
that the deconvolvers are compactly supported.

We use Shannon sampling to create the v; ,(t). To
give our formulae for the approximate deconvolvers
V1., Vo, we use the Jacobi interpolation formula to
get a solution to the modified Bezout equation. We
then show that these deconvolvers satisfy certain PW
growth estimates. This in turn allows us to apply sam-
pling. We use the zero sets of the transforms of the
convolvers to give us the sampling rates. More general
modifications of this construction do not use Jacobi
interpolation (see [10]).

Theorem 1 ([6, 7]) Let 11, (t) = gzl (1), pa(t) =

X— 5. (t), for p prime. Let f € L R) and let 1 be

an even C* function with support in (—(1+ /p), (1 +

/D)) such that 1) >0 and [, _1)(t)dt = 1. The decon-

volvers v; o, such that
Fxp=(f*p) vy + (f*p2)*x1ny

are given by the formulae
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We can also use modulation to create a strongly co-
prime system. This new technique for creating these
systems allows for a greater flexibility in the develop-
ment of actual systems. The system is created by mak-
ing two identical copies of a given sensor, splitting the
signal into two the two separate channels, and appro-
priate modulation of both the input and output of one
of the channels. These two outputs are then convolved
with the appropriate deconvolving filters and added,
resulting in the reconstruction of the input signal.

Let ity model the impulse response of a given system.
Let B¢, = ¢?™%t We will refer to Ey, as a modulating
function in the time domain. Multiplication by E¢, is
usually called “Quadrature Amplitude Shift Keying” or
“Quadrature Amplitude Modulation.” “Quadrature”
refers to the fact that the real and imaginary parts of
the modulating function are 5 out of phase with each
other.

va,p(t) =

Lemma 1 ([6]) If f € L? and p is realizable, then
f*ECOI’L:ECO [E*Cof*u] : (1)



We apply Lemma 1 to create a multichannel system
for a system with impulse response i1 (f) = X;_q 11(1) .

The Fourier-Laplace transform of 1 () is 17(¢) = % .
This has zeros Z; = {:I:k k€ N} . Let pg(t) = Eyp =

ez, (t) . Then 113(¢) = %A— and Zp = {1+
Theorem 2 ([6]) The functions pq(t), pao(t) form a
strongly coprime pair of convolvers.

We construct deconvolvers v; 4 such that for an ap-
proximate identity function %, we have gy * v, +
to * Vo = ¥ . We note that for n € Z, 2, U 2y =
{%} \ {0, i} . Now, if we assume that the auxiliary
function % has support C (—2,2), a construction of 3
via Shannon sampling in frequency is possible. The
Nyquist rate is i — exactly the same rate as 2 ] Z5.
These observations again led us to use sampling to solve
the Bezout equation, which, in turn, yielded the follow-
ing.

Theorem 3 ([6]) Let f € L?(R), and let ¥ be an
even C* function with support in (—2,2) such that 1 >
0 and [7_v(t)dt =1. Given

pa(t) = Xy 1(f) , pa(t) = G%itx[fm] (1),
the deconvolvers v; o such that

Fop=(f*p)*viy+ (f*p2) * 1oy

are given by the formulae
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The function fx is an arbitrarily close approximation
of [ which converges to f in the sense of distributions

as supp(®) — {0}.

2Not to be confused with the zero set of Theorem 1.
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Remark : Thus, given a fixed system, it is possible
to modify the system via some easily performed trans-
form to create a strongly coprime system, and con-
sequently recover the complete input function. This
modulation technique works for creating strongly co-
prime systems for B-spline systems. In a similar vein,
given X|_j 1jx[-1,1], & strongly coprime system is cre-
ated by rotating the square by I and Z (see [4]).

3. SAMPLING ON NON-COMMENSURATE
LATTICES

Again, let ¢ € R, p be a prime number, and let
pa(t) = Xqq(t) 5 pa(t) = X yp,y5(f) model the

impulse response of the channels of a two-channel sys-
tem. Then 7iy(¢) = S2Em  75(¢) = sm(zwﬁo Let

¢
+k
2z = {T}v 2y = {W‘}’
sets of 111(¢), 112(¢), respectively. An examination of

the Fourier-Laplace transforms [i;(¢), ¢ = 1,2, gives
that {i;} is strongly coprime.

Now let
+k +k
Fy={0 1, To={ L,
2 2,/p

for £ € N, and let

for k e N denote the zero

I'=ryuUrs.

Note that the information contained in the original sig-
nal is reconstructed by creating deconvolvers defined
initially on I'. We can show the following.

Theorem 4 Let p be a prime, and let f be a (1+.,/p)-
band-limited function. Then [ is uniquely encoded on
r.

Note, for a (1 + \/p)-band-limited function, the Ny-
quist rate is 1/(2(1 + /p)). However, our individual
sampling rates are 1/2 and 1/(2,/p). Both these rates
(and their average) are below Nyquist.

The reconstruction of f from this lattice is achieved
by using complex interpolation theory. These tech-
niques go back to basic Lagrange interpolation, and
were developed for entire functions by various mathe-
maticians, most notably B. Ya. Levin [§].

Theorem 5 Let p be a prime, and let f be a (14 /p)-

g : _ JEk _ +k
band-limited function. Let T'y = {7}7 Iy = {WF}’
fork € N, and let T' =T1 UT2. Then f can be recon-
structed from its values on I' by the formula

S0 e S0)
0= 2 ISt O @

+ 1'(0)



where
S(t) = sin(2nt) - sin(2./prt) . (3)

Figures 1 — 3 give a simulation of this result.

The result also generalizes. We can create sampling
sets on k + 1 lattices using 1 and the first & primes.
We can also create these as unions of regular lattices
in higher dimensions.

We close by pointing out two items. First, the sam-
pling grid is rigid. Perturbation of the grid results in
a loss of information. Second, that because sampling
points in I" can get arbitrarily close together, the inter-
polating formula does not converge in norm. The in-
terpolating function follows the original function along
exactly, except for a very subtle “ripple” at those points
where the sampling points get close together. We are
currently exploring ways to stabilize the construction.
The first involves continuously backing off the band-
width. This works, but we need to set up exact bounds.
The second approach involves rewriting I' in terms of
the separated and “close” points. At the close points,
we can rewrite the formulae in terms of f'.
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Figure 1: The component S of the interpolating func-
tion.
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.o

Figure 2: The component S’ of the interpolating func-
tion.

f(x) — solid, R(x) — dashed

Figure 3: The function f and its reconstruction R.



