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ABSTRACT 

This paper describes a maximum a postetioti (MAP) estimation 
method for linear inverse problems involving Poisson data based 
on a novel multiscale framework. The framework itself is founded 
on a carefully designed multiscale prior probability distribution 
placed on the “splits” in the multiscale partition of the underlying 
intensity, and it admits a remarkably simple MAP estimation pro- 
cedure using an expectation-maximization (EM) algorithm. Un- 
like many other approaches to this problem, the EM update equa- 
tions for our algorithm have simple, closed-form expressions. Ad- 
ditionally, our class of priors has the interesting feature that the 
“non-informative” member yields the traditional maximum likeli- 
hood solution; other choices are made to reflect prior belief as to 
the smoothness of the unknown intensity. 

1. INTRODUCTION 

Many problems in science and engineering involve the recovery 
of an object (intensity) from indirect Poisson data; that is, Poisson 
data are collected whose underlying intensity function is indirectly 
related to an object of interest through a (linear) system of equa- 
tions. Astronomical imaging [I] and tomographic medical imag- 
ing [2] are just two examples. We call all these problems Poisson 
inverse problems. 

Bayesian methods have become increasingly popular for Pois- 
son inverse problems because they enable the incorporation of prior 
knowledge about the underlying intensity to be recovered, e.g., 
[3,4]. The crucial element of Bayesian techniques is the choice of 
the prior probability model for the underlying intensity of interest. 
Many approaches are based on Markov random field (MRF) mod- 
els [5], especially in imaging applications. The results obtained 
using classical MRF models are encouraging. However, good in- 
tensity models should be capable of representing discontinuities 
(e.g., edges in images) and other inhomogeneous behavior. While 
this is possible within the MRF framework [5], inference based 
on inhomogeneous MRF models usually requires computationally 
intensive stochastic sampling algorithms. 

To address these limitations, in this paper we develop a new 
Bayesian approach to Poisson inverse problems based on a novel 
multiscale prior probability model devised specifically for Poisson 
data. Our prior is capable of representing inhomogeneous behav- 
ior in a very natural and succinct manner. In fact, in certain con- 
figurations this prior is itself a non-Gaussian l/f process, making 
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it especially well suited to modeling a wide class of intensities. 
Moreover, our particular use of conjugacy in building the prior 
allows for simple and computationally efficient maximum a pas- 
tetiori (MAP) estimates of the intensity to be computed using an 
expectation-maximization (EM) algorithm. 

The paper is organized as follows. In Section 2, we give the 
basic problem statement. In Section 3, we re-formulate the basic 
problem within a new Bayesian multiscale framework. In section 
4, we present an EM algorithm for computing a MAP estimate of 
the intensity. In Section 5, we study two numerical experiments, 
and some concluding remarks are made in Section 6. 

2. PROBLEM STATEMENT 

The following problem is addressed in this paper. Suppose that we 
observe Poisson distributed data (counts) 

C?l N Poisson(p,), n = 0,. . . , N - 1, (1) 

where Poisson(p,,) denotes a Poisson distribution with intensity 
parameter pn. The (unknown) intensities p = tn)f:t ye re- ~1 
lated to other (unknown) intensities, X = {X,},, , of primary 
interest, via the relation /A = PX. where P = {p,,,} is an 
N x M matrix of known non-negative weights (usually proba- 
bilities). The problem is to estimate X from the so-called indirect 
data c = {cn}zz,i. A classical application in which this problem 
arises is photon-limited imaging: photons are emitted (from the 
emission space) according to an intensity X; photons emitted from 
location m are detected (in the detection space) at position n with 
probability p,,,,,, . Such a scenario is faced routinely, for example, 
with satellite imaging in high-energy astrophysics. 

It is well known that a maximum likelihood estimate (MLE) of 
X can be obtained using the expectation-maximization (EM) algo- 
rithm [2]. However, because the variance of this MLE can be quite 
high, it is an unsatisfactory solution in many situations, particu- 
larly those involving very low counts. To mitigate this problem, 
several Bayesian procedures have been developed that use prior 
information and produce MAP estimates that are better than the 
MLE in many cases [6,3,4]. However, as mentioned in the intro- 
duction, most of these methods are based on classical MRF models 
that suffer from certain limitations. 

3. BAYESIAN MULTISCALE FORMULATION 

The development of our work is motivated in part by two obser- 
vattons. First, classical MRFs are not well matched to Poisson 
data problems. Second, in practice it is generally rather difficult 



to deal with standard non-homogeneous MRFs. Here we propose 
a new approach based on an extension of the multiscale models 
independently developed in [7, 81 for modeling non-negative Pois- 
son intensity functions m the context of direcr data (in contrast to 
the indirect problem described above). 

3.1. Complete Data 

In anttcipatton of an EM algorithm, suppose that we have the un- 
observable data [9] 

&,m N Poisson(Xmpn,m). (2) 

The count .+,,, is precisely the number of counts originating from 
location m in emission space that are detected at location n in 
detection space. The observed (indirect) data (1) are obtained 
as Cn = ~m&.m. Also note that the (direct) emission data, 
the counts emitted from each location m, are given by the sums 
{C, z~,~},,,, and that C,, z,,,~ N Poisson(&). 

Our objective is to estimate X using a multiscale approach. 
Taking N = M = 2’, for some J > 0, we define the following 
multiscale analysis of the (unobserved) direct or “hidden” data: 

ZJ-1 

&J-l) = 
c m,zm + &,2m+1 

n=O 

r$’ = @+t(J+‘) 2m+1 I 
‘=J-z,...,-J, (3) 

The {a$)} are called the multiscale direct data coefficients.’ 

3.2. Likelihood Function 

It is natural with Poisson data to adopt a likelihood-based frame- 
work. Fundamental to our approach here is a multiscale factoriza- 
tion of the so-called complete-data likelihood function, in which 
both data and parameters are passed through a multiscale transfor- 
mation. The transformation of the data was just described. For the 
intensity parameter X, set 

x(J) 3 x m m I 

anddefine,forj=O,l,... ,J-1, 

(4) 

X~)=Xf~‘)+X~~~),, m=O ,..., 2J-l. (5) 

That is, J denotes the finest scale of analysis (resolution of X), and 
each “parent” intensity X4’ ts simply the sum of the intensities of 
its two children. 

The cunonicul multiscale parameters in this problem are the 
intensity ratios 

(3) _ xf+l) Pm --, j=o ,..., J-l 
A;’ 

The complete-data likelihood (a function of the unobservable data 

z = {Zn.m> , 1 T1 ,,, , can now be factorized as follows. 

p(zlXlp’,p) = Pr($) x (7) 
5-221-l 

J-J j-J Pr(&,+‘),z~~;~lt:)) x 

JCO m=O 

2(J-‘I-1 

n Pr(.z0,2 mT...1~2J-l,2m+l m 
I,W)) 

. 

m=O 

The first factor Pr(.$‘) is a Poisson mass function with parameter 

Xr), the single intensity parameter at the coarsest analysis scale. 

The factors of the form Pr(tcL’), .z~~~~ I&‘) are binomial dis- 

tributed with parameters ~2’ and &‘. The factors of the form 

Pr(zO,zm, . . >~2J-l,Pm+l m 
I,W)) 

are distributed 

M (Po,zmdi-?. ,P2J-1,2,,,+1(1 - Pt”,) , 

where M(&,... ,0,) denotes the multinornial distribution with 
parameters 01, . . ,8,. In deriving this result, we use the standard 
convention [9] that the rows of our our matrix P sum to 1 (e.g., 
interpreting P.,, as the density of detected counts from bin m). 

3.3. Multiscale Intensity Prior Probability Model 

We induce a prior probability model on the unknown intensity X by 
specifying priors for the canonical multiscale parameters (~2)). 

The pk) are modeled as independent random variables distributed 
according to a mixture of symmetric beta densities 

where pi 2 0, CT=‘=, pi = 1, and 

BeMa, 0) = 
1 -/p--l (1 - p)-l, 

B(% a) 

denotes a symmetric beta density with parameter Q, with B(., .) 
the standard beta function. This model was independently intro- 
duced in [7, 81 for modeling Poisson intensities.2 In practice, 
we have found a mixture of two or three beta densities to pro- 
vide a sufficiently rich model. A simple two-component mixture 
(q = 2) consists of a low variance component, e.g.. point mass at 
112 (5 Se(p]a, a) as a + 00). and a high variance component, 
e.g., uniform density on [0, l] (S Ue(p]l, 1)). By assigning a high 
prior probability, e.g., pl x 1, to the low variance component, 
we can reflect a prior belief that the intensity is generally homo- 
geneous, but may contain isolated singularities (corresponding to 
the high variance component). This simple multiscale intensity 

The p = {pk)} can be interpreted as factors governing the mul- 
tiscale refinement of the intensities underlying the hidden data. 

‘In fact, these coefficients can be seen to be simply the unnormaiized 
Haar scaling coefficients of the direct data. 

zWe do not address the issue of modeling or estimating the single in- 
tensity X6”’ at the coarsest analysis scale, although this could be dealt wtth 
easily usmg a (conjugate) gamma prior or improper non-mfomtative pnor 
[lo]. In practice, we use the maximum likelihood estimate C,,, t,,,,, 
which is generally quite reliable; essentially the same es&mate is obtamed 
from a MAP procedure using a non-informative Bayesian prior. 



prior has been applied to intensity estimation problems involving 
direct (in contrast to the indirect problem considered here) obser- 
vations with great success [7, 11, 81. Moreover, in certain cases 
this multiscale prior has l/f spectral characteristics [ 1 I]. making 
it a reasonable model for natural intensittes. 

3.4. MAP Estimation from Complete Data 

The log posterior probability density, logp(p]z), is (up to a con- 
stant) given by 

bzP(PlZ) = hP(ZlP) + @P(P) (9) 

For certain priors p(p), this expression is easily maximized with 
respect to p. 

First, consider the special case in which the p = (~2’) are 
modeled as independent beta distributed random variables (i.e., 
single beta component, no mixture). In this case, the prior takes 
the form 

J-l P-1 

P(P) = JrJo mIo & (&yl (1 - P:yl (10) 

The multiscale factorization of the likelihood (7) and the assump- 
tion of independence among the (~2)) makes it possible to de- 
couple the joint maximization into a separate maximizations over 
each individual parameter. Taking the log of (7) and maximizing 
(9) with respect to (~2)) produces the following MAP estimates: 

$2’ = 
&+ 1) +a-1 

z$) + 2(a - 1) ’ 
O<j<J-1 

4J-1) = 
Pm 

&;’ &,2m + a - 1 

zg-‘) + 2(a - 1) 
(11) 

To model inhomogeneous behavior more flexibly, consider a 
slightly more complex prior consisting of mixtures of a beta den- 
sity and a point mass at l/2. 

J-l 21-l 

P(P) = Jjo 4 q&J (ky-l (1 -q=-l 

+ (1 - p) 6(&) - l/2) (12) 

where 0 < p < 1 is the mixing probability, and 6 denotes the point 
mass function. In this case, the maximization is only slightly more 
complicated. Again, exploiting the fact that the joint maximization 
can be factored into individual maximizations over each parame- 
ter, let us consider only the terms in the log posterior involving a 
single parameter p$’ . We denote the corresponding function to be 
maximized by I],,,, (p$)). 

I, &+J)) = 3 m ty) log(#) + 

(zjm - &.y)) log(1 - pk’) + 

log(& (&y (1 -pi))=-* + 

(1 -PI UC? - l/2)) (13) 

There are two cases to consider: &’ = l/2 and &) # l/2. If 

&) # l/2, then the point mass term drops out from (13) and the 

maximizer IS given by $A’ in (11). The overall maximizer, denoted 

$A:‘, is thus determined by comparing the values I,,,,,(1/2) and 

1 (j+‘) Specifically, J,m ~3 . 

(14) 

4. MAP ESTIMATION FROM OBSERVED DATA 

In the development above, we operated as if the unobservable data 
z were available. Although untrue in practice, the EM algorithm 
may be used to iterate to the estimates just derived. Given the 
observed data c and an estimate i (equivalently s), we can easily 
compute the (conditional) expected value 

&,, = E z [ n,m I c, q = g$;;; (15) 
k 0 k k,m 

This expression enables the following EM algorithm to find a local 
MAP estimate of X. 

E-Step: Given the data c and an estimate i, compute 2 according 
to (15). 

M-Step: Given an estimate of the unobservable data 2, compute 
the MAP estimate 3 according to (11) or (14), depending 
on the chosen prior. 

Using standard results from the theory of EM algorithms [9], it 
can be shown that iteration of the E-Step and M-Step leads to a 
local maximum of the posterior distribution of X given the data 
c. The first E-Step can be computed with an arbitrary positive 
initialization of X (e.g., X E 1). Each subsequent E-Step is then 
calculated with X constructed from the 5 found in the previous 
M-Step.3 

The MAP estimation procedure described above has two other 
desirable properties. First, it is easily verified that, by construc- 
tion, the resulting estimate is non-negative. Second, if we take the 
{pi)} to be i.i.d. uniform on [0, 11, a special (non-informative) 
case of our prior, then we recover the classical MLE method [2]. 

5. EXPERIMENTAL RESULTS 

To demonstrate the effectiveness of our multiscale Bayesian method, 
let us consider the following simulated Poisson inverse problems. 
Consider the intensity functions Xt (‘Blocks’) and X2 (‘Bumps’) 
in Figures 1 and 2 (a), respectively. Distorted intensities (/.+ and 
p2) were generated by circularly convolving each intensity with 
a lowpass filter (.5-point Hamming window) whose weights were 
[0.036, 0.241, 0.446, 0.241, 0.036). Next, arealization of counts 
was generated in each case, c, N Poisson(p,), i = 1,2, as shown 
m Figures 1 and 2 (b), respectively. All quantities are 256 x 1 
dimensional (i.e., the dimensions of the emission and detection 
spaces are M = N = 256). These examples were designed to be 
representative of the type of data encountered in various photon- 
limited estimation problems. Figures 1 and 2 (c) depict the MLEs 
in each case, obtained using the classical EM approach [2]. Fig- 
ures 1 and 2 (d) depict the MAP estimate4 obtained using our new 
multiscale framework with a prior 

&’ - 0.5 Be(p95,5) + 0.56(&j - l/2), (16) 

3Note that since the mapping { Xr’ , p} ++ X is one-to-one, the MAP 
estimate of p generates the MAP estimate of X. 

‘The EM algorithm was initialized with 3 G 1 



for all i, m. The experiments depicted in Figures 1 and 2 were 
repeated m 50 independent trials; the results shown here were typ- 
ical. In the MAP case, the EM algorithm typically converged in 
fewer than 25 lteratlons. Table 1 shows the averaged mean squared 
error of the data Itself (‘Counts’), the MLE, and the MAP estima- 
tor.5 Remarkably, the MAP estimator performed very well despite 
the notable difference in the shapes of the intensity functions in 
these two cases. 

Table 1: MSE results for two test intensities. 

6. CONCLUSIONS 

In marked contrast to other Bayesian approaches to this problem 
based on classical MRFs, e.g., [3, 41, or multiscale MRFs [12], 
our new multiscale framework admits a remarkably simple MAP 
estimation algorithm (while still producing estimates with impres- 
sive performance results). In fact, it is no more computationally 
intensive than the classical MLE approach pioneered in [2]. The 
simplicity of our method owes to two facts. 

1. The complete-data likelihood function factors with respect to 
our particular choice of multiscale analysis, with a single 
element of the canonical multiscale parameter p accompa- 
nying each likelihood component. 

2. The beta priors on the parameters are conjugate priors for the 
likelihood components, which leads to the simple closed- 
form expressions for the MAP estimates.6 

Our method can also be easily extended to higher dimensions by 
using a multidimensional multiscale prior similar to that proposed 
in [l-l]. 
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(b) 
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Figure 1: (a) Underlying intensity X1, ‘Blocks ‘. (b) Observations 
~1. (c) MLE of X1. (d) MAP estimate of Xl. 

5All MSEs are normalized by the squared norm of the underlying in- 
tensity function. 

‘?he beta density 1s the natural conjugate density of the binomial dis- 
tnbution. Moreover, the marginal components of the multinomial are also 
binomial; hence, the beta prior plays a similar conjugate role. For more 
information on conlugate priors see [lo]. 
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Figure 2: (a) Underlying intensity X2, ‘Bumps’. (b) Observations 
~2. (c) MLE of X2. (d) MAP estimate of X2. 
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