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Abstract 

The block algorithm in [l] has illustrated significant 

improvement in performance over the NLMS algorithm. 

However, it is known that block processing algorithms 

have lower tracking capabilities than their sample- 

by-sample counterparts. The Fast Affine Projection 

(FAP) algorithm [2] also outperforms the NLMS with 

a slight increase in complexity, but involves the fast 

calculation of the inverse of a covariance matrix of the 

input data that could undermine the performance of 

the algorithm. In this paper, we present a sample-by- 

sample version of the algorithm in [l] and develop a low 

complexity implementation of this algorithm using a 

similar approach to that in [2]. The new fast algorithm 

does not require matrix inversion thus alleviating the 

drawbacks of the FAP algorithm. A variable step size 

version of the proposed algorithm is also presented. 

1 Introduction 

With emerging applications requiring adaptive fil- 

ter orders of several hundreds or thousands , the 

implementation complexity of fast versions of the 

RLS algorithm is still highly costly and beyond the 
capabilities of current DSP processors. Several al- 

gorithms have been proposed outperforming the 

NLMS algorithm in convergence speed with a rea- 

sonable increase in computational complexity [a], 

or with almost equivalent complexity to the NLMS 

as in [1,3] as a result of performing block adapta- 

tion. 
The FAP algorithm [2] involves the computa- 

tion of the inverse of an N x N input data covari- 

ante matrix, where L is the adaptive filter length 
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and N is the value of the projection order of the 

Affine algorithm. The inverse is calculated using 

a sliding-window version of the Fast Transversal 

Filter (FTF), which is known to have numerical 

instability problems. In addition, when the input 

signal is highly correlated, the inversion process 

causes noise amplification resulting in larger mis- 

adjustment [4]. This problem appears also in 133 

in both the block and sample-by-sample versions 

of the algorithm. The arithmetic complexity of 
the sample-by-sample version [3] is in the order of 

12L. 

The block processing in [1,3] is advantageous in 

terms of complexity reduction, however it is known 

that block adaptation results in lower tracking ca- 

pabilities compared to its sample-by-sample coun- 

terpart . 

To solve the above problems, we propose a fast 

sample-by-sample version of the algorithm in [l]. 

The proposed algorithm combines the low com- 

plexity property of the FAP algorithm and the 

robust performance of the algorithm in [l]. The 

complexity of the original proposed algorithm is 
approximately O(N L). Using the technique in 

[2], the complexity of our implementation is re: 

duced to O(2L) for the same algorithm. Moreover, 

we suggest an adaptive step size to the algorithm 

that enhances its performance by retaining the fast 

convergence characteristic of the original fast algo- 

rithm while providing lower misadjustment. Also, 
it allows better tracking of sudden changes in the 

adaptation process. 



2 The Fast Weighted Subbands 
(FWS) Adaptive Algorithm 

We start by deriving a fast sample-by-sample ver- 

sion of the algorithm in [l]. Fig.1 shows the struc- 

ture of the proposed algorithm, which is similar 

to the one in [l] except that in [l] each subband 
error e;(n) is downsampled by N before being 

used in the update scheme. This follows from the 

block adaptation operation adopted in [l]. The 

analysis filters H;, i = 1,2, . . . . N are assumed to 

form a perfect reconstruction filter bank. The 

principal advantage of the structure in Fig.1 is 

that it updates a full-band adaptive filter as op- 

posed to the traditional subband adaptive filter- 

ing techniques that apply individual adaptive fil- 

ter in each subband. The delay due to the filter 

bank is also moved to the adaptation loop out of 

the input signal path. The sample-by-sample al- 

gorithm attempts to minimize the instantaneous 

sum of the weighted square subbands errors, i.e., 

Cz, &e?(n), relative to W(n). Thus, the update 

recursion of the sample-by-sample algorithm is 

W(n+ 1) = W(n)- e ,&&m 
1-l 

= W(n) + p 5 JWi(n)X(n) (1) 

i=l 

where /J is a step size factor, e;(n) = HTe(n), 

e(n) = [e(n) e(n - 1) . . . e(n - K + l)lT, K is 

the length of the analysis filter H;, and X;(n) = 
@(n)H;. Q(n) is an L x K matrix defined as 

Q(n) = [X(n) X(n - 1) . . . X(n - K + l)], where 

X(n) = [z(n) z(n - 1) . . . z(n - L + l)lT, and 

L is the length of the adaptive filter. The weight- 

ing factor X; is chosen as x;(n) = ,,x,(~),,2+6, 0 < 

S << 1, to normalize the power in each subband 
to reduce the eigenvalues disparity of the input 

data autocorrelation matrix. Define the matrix 

H = [Hi Hz . . . HN], and the diagonal matrix 

A-l(n) = diag{ph(n), kb(n), . . . , &m(n)), 
then Eq.(l) can be expressed as 

W(n + 1) = W(n) + @(n)Hh-*(n)HTe(n) (2) 

The update algorithm in Eq.(2) requires a total 

of L(N + 1) + N(2K + 1) multiplications, and 

L(N + 1) + 2N(K - 1) - 1 additions excluding 

the overhead of calculating x;(n), i = 1, 2, . . . . N. 

It is clear that the complexity of the algorithm 

grows significantly as N increases. We will show 

now how to reduce the complexity of the sample- 
by-sample update algorithm in Eq.(2). 

Define P(n) = HA-l(nJBTe(n), where P(n) = 

M4 P2W a-- PfMl - The second term in 
Eq.(2) is given by @(n)P(n) which can be calcu- 

lated efficiently using similar approach employed 

in the FAP algorithm in [l]. Define the intermedi- 

ate weight vector W(n) such that 

F@(n) = W(n) - @Kmi(n)S(n - 1) (3) 

where (a(n) = [X(n) @K-r(n)] and 

P&4 

m(n) + PI@ - 1) 

S(n) = ; 

PK-i(n)tW-2(n - l)+... 
. . . t pl(n - K t 2) 

(4) 

Using Eq.(2) in (3), W(n) can be updated as fol- 
lows 

%V(n + 1) = W(n) + t(n)X(n - Ii + 1) (5) 

where z(n) = pK(n) t pK-l(n - 1) + . . . + pl(n - 
Ii t 1). Notice that S(n) and z(n) can be easily 
computed recursively as 

[ :g] = [ S(nlll)] i-P(n) (6) 

Since W(n) is already available from Eq.(5), Eq(3) 
is used to calculate the error e(n) = d(n) - 
XT(n)W(n) as 

e(n) = d(n) - XT(n)W(n) - VT(n)S(n - 1) (7) 

where V(n) = CI$-i(n)X(n). The quantity V(n) 

can be calculated efficiently by 

V(n) = V(n-l)+z(n)X(n-l)-2(n-L)X(n-L-l) 

(8) 
where X(n) = [x(n) z(n - 1) . . . z(n - K + 2)lT. 
Table 1 lists the equations along with the num- 

ber of operations needed by the FWS algorithm 



at each time step. Note that the FWS algorithm 

needs the quantities X;(n), i = 1, 2,. . . , N to be 
available to evaluate h-l(n). The complexity of 

the FWS algorithm , excluding that of calculating 

A-‘(n) (the overhead of computing X;(n), i = 

1, 2, . . . . N is included), is 2L+3K(lfN)fN-3 

multiplications and 2L + 3K(l + N) - 2N - 2 

additions. For example, for L = 1024, N = 16, 

K = 32, the complexity of the original sample-by- 

sample algorithm is 18448 multiplies and 18400 

adds, while that of the FWS algorithm is 3693 

multiplies and 3646 adds. On the other hand, the 

FAP algorithm requires 2368 multiplies. 

Table 1 

Computational organization of the fast weighted 
subbands adaptive algorithm 

Equations 

1. Eq.(8) 
2. Eq.(7) 
3. Xi(n) = a(n) 

i = 1,2, *..,N 
4. P(n) = HA-l(n). 
HTe(n) 

5. Eq.(6) 
6. Eq.(5) 
Total 

Number of Number of 
mults. adds. 
2K-2 2K 

L+K-1 K+L-1 
NK N(K - 1) 

2NK + N 2NK-N 

-Ii’ 

K - 1 
L 

2L 

+3K(l+ N) 
+N-3 

L 

2L 

+3K(N + 1) 
-2N-2 

3 A Variable Step Size FWS 
(VFWS) Algorithm 

We suggest here a time-varying step size for the 

FWS algorithm that follows that of the variable 

step size algorithm in [5]. The step size control 

criterion used in [5] was shown to adjust effectively 

the step size according to the adaptation state 

while not being affected by independent noise dis- 

turbance. The step size update equation is given 

bY 

and 

(9) 

~(4 = PP(~ - 1) + (1 - PMnMn - 1) 00) 

where limits on ~(n + l), a, p, and y are the same 

as those in [5]. Simulations will show that this 

technique improves the performance of the FWS 

algorithm with negligible increase in complexity. 

4 Simulations 

We examine here the performance of the FWS, 

VFWS, FAP, and NLMS algorithm. The unknown 

system to be identified is a 50-coefficient FIR filter, 

which is a truncation of a 200-tap impulse response 
of an anechoic room, measured at 8kHz sampling 

rate. Perfect modeling of the unknown system is 

assumed, i.e., L = 50. The input signal is a highly 

correlated one generated by passing a zero-mean 

Gaussian signal with unity variance through the 

filter H(z) = 1 
l-1.58~'+0.8+' A white zero-mean 

Gaussian noise is added to the desired signal such 

that SNR=30dB. Results are obtained by averag- 

ing over 100 independent runs. 

In this example, the FWS is compared with 

the FAP and NLMS algorithm. Both the FAP 
and FWS have N = 8. The step sizes used are 

~FWS = 0.07, /.LFA~ = 0.09, and /LNLMS = 1, 

which are chosen to achieve the same steady state 

excess MSE of the NLMS algorithm. The analysis 

filters are cosine modulated perfect reconstruction 

filter banks with K = 32. It is clear from Fig.2 

that the FWS operates as well as the FAP algo- 

rithm, and outperforms the NLMS. 

Fig.3 compares the behavior of the FWS and 

VFWS for the same above example but with an 

abrupt change in the unknown system, i.e., all co- 

efficients are multiplied by -1 at iteration 10 000. 

The VFWS is used with p = 0.99, (Y = 0.97 [5], 

7 = 0.1, pmac = 0.08, and prnin = 0.005. For the 
FWS, PFWS = 0.007. The parameters are selected 

to achieve a steady-state excess MSE of approxi- 

mately 40dB. As expected, the VFWS ,algorithm 
gives the fastest speed of convergence while retain- 

ing the same small level of misadjustment , and also 

maintains the ability to respond fast to changes in 

the system. 

5 Conclusions 

In this paper, we have presented a fast weighted 

subbands adaptive algorithm that leads to con- 

siderable improvement over the NLMS algorithm 



with a reasonable level of complexity. The new 

algorithm also performs as well as the FAP algo- 

rithm for the same N. The arithmetic complex- 

ity of the fast algorithm amounts to 2L + 3K(l+ 

N) + N multiplications and 2L + 311( 1 + N) - 2N 

additions. A time-varying step size can easily be 

incorporated in the fast new algorithm. The per- 

formance of the proposed algorithm was compared 

to that of the FAP and NLMS algorithms. Sim- 

ulation results confirmed its effectiveness for both 

fixed and variable step sizes. 
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Fig.1 The structure of the sample-by-sample 

weighted subband adaptive algorithm. 
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Fig.2 Comparison of excess MSE between the 

NLMS, FWS, and FAP algorithm for correlated 

input signal SNR=30 dB. 
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Fig.3 Comparison of excess MSE between the 

FWS, and VFWS algorithm with N = 8 for an 

abrupt change in the unknown system parameters. 


