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ABSTRACT 
This paper describes an underwater object discrimi- 
nation system applied to recognize cylinders of vari- 
ous compositions from different angles. The system 
is based on a new combination of simulated dolphin 
clicks, simulated auditory filters and artificial neural 
networks. The model demonstrates its potential on real 
data collected from four different cylinders in an envi- 
ronment where the angles were controlled in order to 
evaluate the models capabilities to recognize cylinders 
independent of angles. 

1. INTRODUCTION 

Dolphins possess an excellent sonar system for solving 
underwater target discrimination and recognition tasks 
in shallow water (see e.g., [2]). This has inspired re- 
search in new sonar systems based on biological knowl- 
edge, i.e. modelin 
bilities (see e.g., [4 

the do1 hins discrimination capa- 

ear of the dolphin I 
and [5#. The fact that the inner 
as many similarities with the hu- 

man inner ear makes it tempting to use knowledge from 
simulations of the human auditory system when trying 
to model the dolphin sonar system. Neural networks 
have proven to be very useful for pattern recognition 
tasks which makes it interesting for the present appli- 
cation. 
Based on earlier work [3], [ll], [15] we will describe and 
present results from an experiment using a simulated 
dolphin signal, preprocessing based on auditory model- 
ing and classification using a neural network to classify 
echoes from different cylinders and different angles. 

2. DATA COLLECTION 

Echoes from four cylinders made of different material 
compositions were measured from different angles with 
an echo collection system using a planar broadband cal- 
ibration transducer to project and receive the acoustic 
signals. All data were collected, in a cylindrical tank 
2.4 m in diameter, 1.8 m high and filled with sea water 
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located at Marine Mammal Research Program, Univer- 
sity of Hawaii. 
All four cylinders were 3.8 cm in outer diameter and 10 
cm high. Cylinder nr. 1 was made of degassed epoxy 
containing coral rock pebbles. Cylinder nr. 2 was made 
of aluminum and hollow with an inner diameter of 2.54 
cm and open in both ends making it possible for water 
to fill the inside. Cylinder nr. 3 was made of alu- 
minum and hollow with an inner diameter of 2.54 cm 
but closed in both ends creating a cylindrical air space 
inside. Cylinder nr. 4 was made of stainless steel and 
hollow with an inner diameter of 2.54 cm and open in 
both ends making it possible for water to fill the inside. 
The transducer was mounted on a pole and placed in 
the tank with the backside of the transducer approxi- 
mately 12 cm from the wall and with equal distances to 
the bottom and to the water surface. The transducer 
was pointing towards the center of the tank. Each of 
the cylinders were mounted on a rotor with two mono- 
filament lines attached to the two ends of the cylinder 
and suspended in the tank approximately 1.65 m in 
front of the transducer at the same depth as the cen- 
ter of the transducer. The cylinder was positioned in 
such a manner that its longitudinal axis was horizon- 
tally aligned. For each of the cylinders the rotor was 
initially acoustically calibrated to 0 degrees when the 
longitudinal axis of the cylinder was perpendicular to 
the normal of the transducer surface. This was accom- 
plished by first assuming the cylinder will produce the 
strongest echo when placed in the 0 degrees position 
and then turning the cylinder to the position in which 
the visually strongest echo was observed on an oscil- 
loscope. A simulated dolphin echolocation signal was 
projected at the cylinders and a Gage 1012 Data Ac- 
quisition Board operating at a sampling frequency of 1 
MHz was used to digitize the echoes with a resolution 
of 16 bits. Each echo consisted of 1024 points with the 
time window placed so major reflections from the water 
surface and tank walls and bottom were left out. For 
each cylinder echoes were collected from angles from 0 
degrees (the longitudinal axis of the cylinder perpen- 
dicular to the normal of the transducer surface) to 90 
degrees (the longitudinal axis of the cylinder parallel 
to the normal of the transducer surface) at increments 
of 1 degree. For each angle 10 echoes were collected 
at a rate of 2 echoes per second) resulting in total: 
10 * 91* 4 = 3640 echoes. 



3. PREPROCESSING 

Features from the echoes were extracted using a com- 
bination of a matched filter, envelope detection, a gam- 
matone filterbank, time integration and PCA. 
To find the beginning of each echo a matched filter, 
which was implemented as the time reversed version of 
the transmitted simulated dolphin click, was applied. 
The start of each echo was chosen as the peak of the 
envelope of the output from the matched filter (see e.g. 
[S]). The first 512 data points following the start was 
;2nn.used as the input signal to the gammatone filter- 

The gammatone filter is defined by its impulse re- 
sponse [ 121 

g(t) = atcnel) exp(-2&t) cos(2nf,t + cp), t > 0 (1) 

where b largely determines the duration of the impulse 
response and thus, the bandwidth of the filter; n is the 
order of the filter and it lar ely determines the slope 
of the skirts. When the or 8 er of the filter is in the 
range 3-5, the shape of the magnitude characteristic 
of the gammatone filter is very similar to that of the 
roex(p) filter commonly used to represent the magni- 
tude characteristic of the human auditory filter [9]. The 
equivalent rectangular bandwidth (ERB) of the audi- 
tory filter is given by [14] 

ERB = 24.75(4.37f,/lOOO + 1Hz) (2) 
where fc is center frequency of the filter. The center fre- 
quencies of the filters has been determined using Fay’s 
modification of Greenwood’s equation [13] for estimat- 
ing cochlea frequency distributions along the basilar 
membrane 

fc(x) = o.oo8f,,,(102~1” - 1.0) (3) 

where fmax is the maximal frequency perceived by the 
animal and x is the position of the filter on the basi- 
lar membrane expressed as the proportion between the 
distance from the basal end and the full length of the 
basilar membrane (x = 0 at the basal end and x = 1 
at the apical end). A high-frequency boundary of 150 

was used to coincide with the bottlenose 
i?pl% &$& frequency limit of hearing [8]. 
If we choose n = 4 and fc b is large, which is the case 
here, then b and the 3-dB ll 
are given by [lo] 

andwidth, BW, of the filter 

b = 1.019ERB (4) 

BW = 0.887ERB (5) 
The Q-value of a filter is defined as Q = fc/BW and 
by using the described function for center frequencies 
all filters have approximately a constant Q-value of 
10 which is between the Q-values measured for the 
bottlenose dolphin usin 
Critical Bandwidth (C i ) 

the two different techniques: 
(Q = 2.2) [l] and Critical 

Ratio (CR) (Q = 12.3) [7]. 
The remaining constants a and cp in the gammatone 
filter are chosen as a = 1 as the amplification variable 
and cp = 0 as the phase variable. 

The filterbank consists of Nslt such gammatone nil- 
ters and iVslt is limited to 15 for computational reasons. 
The output of the filterbank when filtering the input 
signal with the bank of filters consists of Nslt new sig- 
nals, y(nelt, t), where nsit is the filter number. Each of 
these signals was split up in Nbin time bins of a chosen 
length of bbin = 25 ~LS and the energy was calculated in 
each time bin, nbin using 

E(wt , nbin) = 
s 

~bl”*~blll 
y2(wt,W (6) 

(“bm-1)*&m 

This energy image was then log-transformed using 
Elog = log,,(E). 

Elog consists of Nsrt . Nbin values which is reduced 
by first finding the principal components of a training 
set and then use the iVeis largest eigenvalues to project 
all the Elog’s to a lower dimensional space (see e.g., 
[17]). Neis was chosen to 10 for computational reasons, 
which means 10 features were extracted from each echo. 

4. CLASSIFICATION 

The extracted features were classified using a feed-forward 
net with a modified SoftMax [18] normalization as pre- 
sented in [15] ( see also, [17], [IS]). The 2-layer feed- 
forward network with nI inputs, nH hidden neurons 
and c - 1 outputs, where c is the number of classes, is 
defined by: 

hj(z) = tanh 2 u&xl + w&, 
( 

(7) 
fkl 

4%(z) = ~w$,(z)+w,:: 

j=l 

where w$, wiff are the input-to-hidden and hidden-to- 

output weights, respectively. All weights are assembled 
in the weight vector w = {w,‘,,w~}. In order to in- 
terpret the network outputs as probabilities we used 
a modified normalized exponential transformation [15] 
similar to SoftMax [18], 

The network was optimized using the maximum a 
posteriori technique, i.e., the cost function is the sum 
of the log-likelihood and a regularization term (prior). 

C(w) = ST(W) + R(w, K) (10) 

where R(w, K) is a weight decay parameterized by a 
set of regularization parameters K. 
The full scheme for optimizing the network was pre- 
sented at ICASSP 98 [15] but in this work only the 
weights and the regularization parameters were opti- 
mized using a second-order Gauss-Newton scheme based 



on the training set for the weights and a gradient de- 
scend scheme based on the validation set for the regu- 
larization parameters as described in [15 . For a more 
detailed description and use of outlier d etection, see 
P51. 

The number of inputs in the network correspond to 
the number of extracted features (n, = lo), the number 
of hidden units, nH was chosen to 5 and the number of 
classes c was chosen as the number of cylinders 

b 
c = 4). 

Five hidden units was chosen to give an accepta le size 
of the network which then consists of 11.5 + 6 .3 = 73 
free weights . 

5. EXPERIMENT 

To investigate the capability of the system to discrim- 
inate between the cylinders independent of angle the 
echoes were divided in a training set and a test set with 
the training set consisting of the echoes from some an- 
gles and the test set consisting of the echoes from the 
remaining angles. Experiments were made for training 
angles separated by 2, 5, 10 and 15 degrees, resulting 
in training sets of 1840, 760, 400 and 280 data respec- 
tively (0 and 90 degrees was chosen to be included in 
the training set) and test sets of 1800, 2880, 3240 and 
3360 data respectively. It should be mentioned for op- 
timizing the neural network the training set was again 
split into two equally sized sets denoted training set 
and validation set in [15] used for optimizing differ- 
ent parameters in the network but as described in [15] 
weights in the network were finally retrained on the 
combined set of training and validation. 

Table 1 reports the performance of the system for 
the different training separation angles. The system is 
capable of discriminating between the different cylin- 
ders independent of angle with a probability of mis- 
classification pmc of 0.059 if the spacing between the 
training angles is 2 degrees. It is noted that closer 
spacing and thereby more training angles as expected 
decreases the probability of misclassification. 

Train. 
a. 

L 5 10 
Deg. Deg. Deg. 
0.016 0.000 0.005 
0.064 0.164 0.260 

Test 0.059 0.186 0.186 

Test after retrain 0.059 0.138 0.195 

Table 1: Probability of misclassification for different 
separation of training angles 

6. DISCUSSION AND CONCLUSION 

This paper presented a new system for underwater ob- 
ject discrimination particularly focusin on eliminat- 
ing the influence of the objets angles. R n experiment 
involving cylinders made of various material composi- 
tions and recordings from different angles demonstrated 

the potential of the system provided enough angles is 
used when training the system. 

In nature the dolphin is possibly also capable of ex- 
tracting angle independent information since the dol- 
phin can possibly not obtain information from all an- 
gles before it recognizes the object. It would thus be 
interesting to setup an experiment with a dolphin in 
which the angles available for the dolphin were strictly 
controlled as in the experiment described in this paper. 
Such an experiment is of course not easy to carry out 
due to the water motions in a penn with a dolphin and 
the fact that it is difficult to control the position of the 
dolphin to an accuracy of only a few degrees. 
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