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ABSTRACT

In recent studies of heart rate variability in humans [2,5,6], it has
been demonstrated that the scale-dependent wavelet transform
(WT) standard deviation [ Ow.(m)] of the interbeat intervals can
be used to discriminate patients with certain forms of cardiac
dysfunction from normal subjects. This paper forges an explicit
link between this measure and a corresponding spectral measure,
which is also shown to provide discrimination between the two
classes of data. The statistics of the estimator for oy, (m) are
obtained in the analytically simplest case, including expressions
for its bias and variance. Numerical simulations are provided to
support the theoretical analysis. We compare the bias, variance,
and frequency resolution of WT and spectral measures, and
conclude that the former appears more suited to our particular
circumstances.

1. INTRODUCTION

Heart rate variability (HRV) is a commonly used term to describe
variations of human heart interbeat intervals measured using non-
invasive electrocardiographic methods. HRV analysis has been
considered by many researchers, and has been shown to be a
useful clinical tool, though its use as an early predictor of
underlying pathology is still under investigation [4]. In recent
studies, multiresolution wavelet analysis of HRV was shown to
discriminate between healthy patients and those with some forms
of underlying cardiac pathology [2,5,6]. The discriminating
measure used was the standard deviation [ Gy, (7)] of the dyadic
Discrete Wavelet Transform (DWT) of the sequence of R-R
heartbeat intervals. In particular, it was found that the value of
Owa(m) over a small range of scales m differed for the two
classes of data considered (normal and pathological). However,
for reliable clinical use, we must clearly understand the statistical
properties of this discriminating measure. In this paper, we
consider the statistical properties of o, (), and explicitly
demonstrate its links to power spectral density (PSD) measures
of the same data. We assess their relative utility by evaluating the
bias, variance, and frequency resolution of estimators for both
measures. Analysis of WT variance is of general interest, as it has
been widely used in a variety of fields. Measures of WT variance
have been used in assessing long-term correlation [1,2,7].

2. THEORY
2.1 Spectral and DWT Variance Measures
In [5], the statistic used was Oy, (m), the standard deviation of

the DWT of the discrete-index sequence of RR intervals. The
DWT was defined in the following way:
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where the scale variable m and the translation variable # are non-
negative integers, 7{i] is the discrete-index sequence of RR
intervals, y is the wavelet basis function, and M represents the
total number of intervals analyzed. The quantity of interest in
this paper is the variance of W[m,n] as a function of m, which we
will define as D(m). WT variance measures can be
interchangeably expressed either in variance or standard-
deviation format (e.g., Oy.(m) as in [5]), which are equivalent.

We proceed by demonstrating the equivalence between D(m) and
PSD measures of the same data. The analysis and interpretation
is clearer in the continuous domain, but the results translate
easily to the discrete domain by interpreting the DWT as a
discretized version of a continuous wavelet transform (CWT) of
a signal 7(?) defined as:
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where a and b are scale and translation parameters respectively,
wis a wavelet basis function, and * is complex conjugation. The
CWT has the salutatory effect of removing non-stationarities, so
that at any fixed scale CWT” is a stationary sequence. Since the
expected value of CWT" is 0, the variance of CWT" at scale a is:
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For a wide-sense stationary signal #(7), this leads to:
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where R(s) is the autocorrelation function of =(f). Routine
algebraic manipulation leads to

D(a)=a [R(ay)CWT"¥ (1, y)dy, 5)

—00

or alternatively:
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where CWT¥(1,y) is the wavelet transform of the wavelet itself
(termed the wavelet kernel), and S(®) is the PSD of the signal.

Equation (6) shows that the WT variance is directly related to the
PSD through an integral transform. This has a simple
interpretation: the term in square brackets is a bandpass filter that
only passes components of the PSD in a bandwidth surrounding
the frequency ®, corresponding to scale a. We will return to this
viewpoint later in discussing the frequency resolution of D(a).
For a discrete-index sequence, the sampling “time” can be
arbitrarily set to 1 so that a frequency ®, corresponds to 1/a.
Accordingly, any discrimination seen in a D(a)-based statistic
such as Ow, () should also be accessible through PSD-based
measures. In Section 3, this is illustrated in the particular context
of HRV analysis by applying both PSD and D(a) measures to the
same data sets. Since the discrimination properties of these
measures are decided by the accuracy of our estimates, we
proceed to consider the statistics of both D(a) and PSD
estimators.

2.2 Properties of Spectral and D(a) Estimators.

In Section 2.1, we showed that PSD and DWT variance measures
are intimately linked, and that in theory either can be used to
provide discrimination between data sets. Here, we consider the
statistics of the estimators used to determine D(a) and PSD
measures. In order to present an analytically tractable case, we
consider estimating both measures for a data set of M samples of
white Gaussian noise with zero mean and variance o”. The
sampling rate is arbitrarily chosen as unity. The theoretical value
for the PSD of this signal is o*. We will evaluate the discrete
dyadic version of D(a), i.e. D(m) = O ya(10).

The bias and variance of non-parametric PSD estimators is well
studied; for an overview see Reference [3]. For comparison with
DWT variance estimators, we assume that S(w) is calculated
using an averaged periodogram technique, with K non-
overlapping rectangular data windows of M/K datapoints each.
This provides a biased estimate of S(@), with a variance equal to
o*/K, and a frequency resolution of approximately 2K/M. The
bias cannot be removed, since it arises from the integration of
nearby values of S(w) which are unknown, but can be minimized
by using longer data segments (i.e., reducing K). However, this
reduces the number of available segments for averaging, leading
to the well-known bias-variance tradeoff in PSD estimation.

Results for the bias and variance of DWT variance estimators are
not well studied, however, and we will consider estimators of
DWT variance obtained from the definition of Eq. (1), with {i]
assumed to be the same WGN sequence described above.
Without loss of generality, we assume that M is an integer power
of 2. We also make the simplifying assumption that yfi] is
obtained by sampling an underlying Haar wavelet basis
compactly supported on [0,1/2], so that the discrete-index
sequence for scale m=1 is [1,-1]. In addition, we restrict
ourselves to integer values of 7. The number of valid samples of
Wlm,n] (i.e., with no edge effects) changes with scale. For scale

m=1, we have M/2 DWT coefficients, and for general m, we have
M/2" samples in the range n=[0,(M [2")—1]. The expected

value of D(m) is o for all values of m. We will compare this
with the expected value from a suitable sample variance
estimator, such as:
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where we have used the fact that E[W[m,n]]= 0, where E
represents the expectation operator. The caret over D(m)
indicates that it is an estimator. We are interested in the bias and
variance of this estimator. Consider first its expected value which

turns out to be
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using E[di]dj]]=6’&i-j). For the specific case of the Haar
wavelet, where ¢/ only takes the values 1 or 0, the quantity
inside the square brackets evaluates to M. Therefore the
expected value of our sample estimator is
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While this is an asymptotically unbiased estimator of the required
quantity, for finite M the sample variance will show considerable
bias at large values of m. If we assumed a priori a signal with
white noise properties, we could deterministically remove the
bias. For more general classes of signal, it may not be possible to
analytically determine the bias. Qualitatively, we may expect bias
effects to increase at large scales regardless of the signal
properties.

Calculating the variance of the estimator proceeds as follows.
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where the summation limits remain as before, but have been
omitted for clarity. The expectation operator can be brought
inside the summation to yield
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There are four different combinations of 7, j, &k, and / which
provide a non-zero contribution to this summation:
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Evaluation of the summation of Eq. (11) using Eq. (12) results
in:
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which finally yields the result
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This provides the intuitively expected result of increasing
variance with scale m. Note also that since the estimator is
asymptotically unbiased, and its variance goes to 0 as M — o0,
Eq. (7) defines a consistent estimator of DWT variance.

3. RESULTS

3.1 Comparison of Spectral and DWT Measures
for HRV Discrimination

To confirm the validity of Eq. (6), we calculated estimates of
both the PSD and the wavelet-transform variance D(m) for a set
of RR intervals. This data is derived from Holter monitor
recordings drawn from the Beth Israel (Boston, MA) congestive
heart-failure database. They comprise 12 records from normal
patients and 15 records from severe congestive heart-failure
patients. Complete details of the analyzed data sets can be found
in Reference [8]. Figure 1(a) gives the PSD estimates for the 27
records, with normals shown as dashed, and abnormals as solid
curves. These were calculated using the averaged periodogram
technique with a rectangular window of length 512. A clear
region of separation exists for frequencies in the range [0.03125—
0.0625]. Note that the units for the x-axis are given in
cycles/index rather than in Hz, since we are analyzing a discrete-
index sequence. Spectral measures of discrete-time sampled HRV
signals have been extensively used, as well as measures
involving number of beats, where clear physiological
interpretation of temporal frequencies is possible [4,8].

In Figure 1(b), we show the DWT variance estimates. There is a
clear region of separation for scales m = 4 and 5. Note that these
scales correspond to the frequencies 0.0625 and 0.03125
illustrated in Fig 1(a). These figures confirm the conclusions set
forth in Section 2.1. Note that in both figures, there is
considerable spread in the calculated curves; this is due both to
inherent parametric differences between data sets and statistical
fluctuations of the estimators. For maximum clinical utility, we
must minimize the variability arising from the second factor.

3.2 Simulations of the Bias and Variance of D(mn)

To confirm the analytical results obtained in Egs. (9) and (14),
we conducted numerical simulations using data sets of
uncorrelated random Gaussian noise of zero mean and unit
variance. A data length of M=2048 was chosen, and 500 trials
were conducted in which the DWT variance was estimated using
Eq. (7). Figure 2 shows the results of these simulations. These
numerical results confirm the accuracy of the analysis.
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Figure 1. (a) Power spectral density versus frequency for
the data sets used in [5]. The shaded region is limited by
the maximum value of the PSD for all abnormal data sets
(solid curves). Separation of the two classes of data can
be seen over frequencies 0.03125-0.0625=1/32-1/16
(region bordered by vertical lines). (b) Wavelet transform
variance D(m) = czwav(m), versus scale m for the same
data sets. The shaded region is limited by the maximum
value of D(m) for all abnormal data sets (solid curves).
Separation of the two classes of data occurs at scales 4
and 5, corresponding to the same frequency range
observed in (a).

4. DISCUSSION AND CONCLUSIONS

We have shown that DWT variance measures give equivalent
information to spectral measures. We have considered the bias
and variance associated with estimators of these measures, but
have not yet addressed their relative frequency (or scale)
resolution. The frequency resolution of non-parametric PSD
estimates is dictated by the width of the windows used in
constructing an averaged periodogram. The frequency resolution
of D(m) can be determined as follows [1]. The quantity in square
brackets in Eq. (6) can be usefully recast as H(aw), where H(w)
is the bandpass filter generated by taking the Fourier transform of
the wavelet kernel. This bandpass filter has an associated center
frequency ®q and Q-factor. For example, the Haar wavelet basis



with unit sampling has ®¢=0.5, and 0=0.5. Wavelets of higher
regularity will typically have a higher Q. Eq. (6) tells us that the
estimated D(a) depends only on spectral components passed by
H(aw), so that the frequency resolution of D(a) can be defined as
the bandwidth of the corresponding H(a®), i.e., a ®¢/Q. For the
specific example analyzed here of a dyadic Haar-basis DWT, the
frequency resolution at scale m is 1/2". Combined with Eq. (15),
this provides the pleasing result that D(m) has a constant
frequency-resolution/variance product. This is equivalent to the
tradeoff in spectral estimation between those two quantities.
Considering their close links, moreover, it is not surprising that
the product is approximately equal for both measures:
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where Af is frequency resolution, and AD and AS are the
variances of D(m) and the PSD estimate, respectively. For D(m),
we have good frequency resolution and poor estimator variance
at low frequencies, whereas the PSD provides constant frequency
resolution and estimator variance at all values, once the number
of segments for averaging has been chosen.

This provides insight into choosing between D(#) and the PSD
for our particular analysis. Since the ability to discriminate data
sets depends upon values of D(m) or the PSD over a small set of
scales/frequencies, we must select our analysis to have sufficient
frequency resolution in that range. For example, we could set Af
at the center frequency of the discriminating band to equal some
fraction of the lowest frequency discriminating range. This
frequency resolution can be easily chosen for both measures (by
selecting K for spectral estimation, or by arbitrarily assigning the
support of the wavelet as scale m=1).

However, the specific data sets we are dealing with exhibit strong
long-term correlation effects. Therefore, the power in the signal
is concentrated at low frequencies, which is also the frequency
range where discrimination is possible. In evaluating measures
at low frequency, we should minimize the contribution of
confounding energy at surrounding frequencies. Accordingly, the
measure with good frequency resolution at low frequencies
[D ()] should prove more suitable for our particular application.

It is worth considering whether the performance of wavelet
transform variance measures can be improved by evaluation
either on a non-dyadic grid (finer scale spacing), or at non-
integer values of n (finer time spacing). Evaluation on a non-
dyadic scale provides us with interpolated values at scales in
between powers of 2. Provided data discrimination is observed in
a range which includes at least one power of 2, there appears to
be little benefit in moving to a non-dyadic grid. Introducing
samples of W[m,n] at non-integer values is analogous to using
overlapping windows in PSD estimation. Nearby values of
Wlm,n] are highly correlated, and will have minimal effect on the
overall performance of the estimator.
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Figure 2. Comparison of predicted bias and variance of
the DWT variance estimator with numerical simulation,
for zero-mean, unit-variance WGN. Data sets of length
M=2048 were chosen, and 500 estimates of D(m) were
obtained. The solid curves give the mean value of D(m),
in addition to the 1 standard deviation for numerical
estimates of D(m). The dashed curves provide the
corresponding analytical values.

The analysis presented here is considerably more difficult for
wavelet bases other than the Haar basis. However, it seems
reasonable to assume that the overall results will persist, though
higher Q wavelets may give additional benefit. This will be
investigated in future work.
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