FREQUENCY RECOVERY OF NARROW-BAND SPEECH USING
ADAPTIVE SPLINE NEURAL NETWORKS

Aurelio Uncini, Francesco Gobbi and Francesco Piazza

Dipartimento di Elettronica e Automatica - Universita di Ancona Italy
Via Brecce Bianche, 60131 Ancona-Italy
Phone :4+39 (71) 2204841- Fax:+39 (71) 2204464
email: aurel@eealab.unian.it - URL: http://nnsp.eealab.unian.it/

ABSTRACT

In this paper a new system for speech quality enhancement
(SQE) is presented. A SQE system attempts to recover the high
and low frequencies from a narrow-band speech signal, usually
working as a post-processor at the receiver side of a transmission
system. The new system operates directly in the frequency
domain using complex-valued neural networks. In order to
reduce the computational burden and improve the generalization
capabilities, a new architecture based on a recently introduced
neural network, called adaptive spline neural network (ASNN), is
employed. Experimental results demonstrate the effectiveness of
the proposed method.

1. INTRODUCTION

In the last years the speech quality enhancement (SQE) systems
have drawn a growing interest since they can improve the
unnatural feel of narrow-band telephone speech. In the past
already the British Broadcasting Corporation (BBC) performed
several experiments of narrow-band speech enhancement, using
noise generators and non linear speech processing [1]. More
recently several authors have proposed methods based on linear
and non linear digital processing of time-frequency speech
signals [2-7].

In [2], the authors propose a spectral envelope extrapolation
based on a linear predictive coding (ILPC) approach. A codebook
consisting of wide-band LPC envelopes must be available.
During the enhancement process, the short-time spectra of the
narrow-band speech signal to be enhanced are computed every
20 ms. For each frame, the best-fitting entry of the codebook is
selected as the desired wide-band envelope estimate. The fine
spectral structure is built using a simple excitation signal derived
by processing the narrow-band signal with the so-called High-
Frequency Regenerator (HFR) which performs a simple spectral
folding.

In [3], Hermansky et al. propose the use of a bank of Wiener-like
non-causal FIR filters for the prediction of cubic-root
compressed short-time power spectrum. This non-linear
technique is based on the RelAtive SpecTrAl (RASTA)
processing of speech firstly used to enhance the quality of noisy
cellular telephone communications. The main drawback of this
approach is in the phase reconstruction which is performed using
the low frequency signal, producing annoying musical-like
residual noise.

In [4] the same authors proposed a different predictive approach.
The spectral predictor is realized with a linear all-pole filter. The

envelope prediction is performed by filtering the time trajectory
of LPC-cepstral coefficients of the narrow-band speech signal
with a multidimensional filter designed on some training data.
The fine spectral structure is derived by an excitation signal
obtained by a technique used in codebook-excited speech coding.
A very simple approach, suitable for real time application on a
low-cost DSP, is proposed in [5]. The narrow-band speech signal
is enhanced by simple non linear processing. The non linear
process consists in the cascade of a rectifier, an high pass filter,
and a shaping filter followed by a block which performs a level
adjustment tuned on a subjective assessment.

In [6] this system is improved using an adaptive filter which
performs the high frequency spectral shaping and the level
adjustment. Other improvements can by found in where the LPC
parameters of the narrow-band signal are used to produce the
wide-band parameters using a simple layered neural network.

In this paper we proposed a simple neural scheme to perform the
wide-band frequency recovery from a narrow-band speech.
Neural network approach, in fact, allows to extract the missing
frequency contents by a simple non-linear mapping, in the
frequency domain, from narrow to broad band speech signal.

The proposed SQE system works without an excitation signal
and does not need any parameter tuning.

The computational load of standard neural networks is overcome
using a recently proposed architecture, very suitable for signal
processing application, based on an adaptive spline activation
function called adaptive spline neural network (ASSN) [8-10].

2. THE NEURAL NETWORK SPEECH
QUALITY ENHANCEMENT SYSTEM

2.1 Problem definition

It is known that a signal sampled at 16KHz (wide-band speech)
has a nominal frequency band from 0 to 8KHz, while the narrow
band telephone speech is limited between 300 and 3400 Hz. The
problem is therefore to recover from this narrow band signal the
two missing frequency bands: nominally from O to 300 Hz and
from 3400 to 8000 Hz. As supposed by other authors [2-7], this
should be made possible by the human speech production
mechanism, which relates the frequency contents of different
bands.

Let S[7] be the narrow-band speech signal whose short-
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A SQE system assumes the existence of an operator ¥ (in
general non-linear), called quality enhancement operator (QEO),
such that:
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2.2 The SQE Architecture

Basically, the proposed SQE system performs a direct STFT on a
narrow-band signal upsampled to 16KHz, recovers the broad-
band signal through the non-linear operator ¥, and performs an
inverse STFT.

Such a simple scheme, however, does not attain good
performances, since the recovery processes for the lower and the
higher band are very different. Moreover the W operator could
degrade the narrow-band frequency contents of the original
speech signal. Better performances hence can be obtained by
splitting the ¥ operator in two different operators ¥} and W,

one for the lower frequencies and the other for the higher ones.
The original narrow-band information are sent to the output
without any processing. A detailed scheme of such a SQE system
is shown in figure 1:
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Figure 1. The architecture of the proposed enhancer (M is the
length of the window w[n] used for the STSF and LPF is the
interpolation filter).

The proposed system implements both the ¥y and Wiy operators

with properly trained complex adaptive spline neural networks,
respectively ASNN1 for the first operator and ASNN2 for the
second.

However, since it is known that the frequency contents of the
higher band (3600-8000 Hz) is strongly related to the contents of
the narrow-band frequencies mainly for voiced sounds, our SQE
system processes differently high frequency voiced and unvoiced
sounds. For the first the ASNN2 properly trained only on voiced
speech is employed, while for the latter the scheme [5] of figure
2 is also used.
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Figure 2. Additional scheme for recovery of high frequency
unvoiced sounds (HPF is a high pass filter as in [5]).

2.3 Neural Network Architecture and Learning

In order to develop a real-time SQE system, a specific NN
architecture with adaptive activation function is used [8-10].

This network is designed using a neuron containing an
adaptive parametric spline activation function. The multilayer
networks built with such neurons are still universal
approximators and have usually a smaller structural complexity,
maintaining good generalization capabilities.

The spline activation functions are smooth parametric curves,
divided in multiple tracts. The i-th tract of the curve Fi() is

represented by

T
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where u is the parameter, T is the transpose operator and Fy;(.),

Fyi()) are two polynomial functions describing the curve in the

two coordinates x and y.

In particular due to the continuous first derivative, which
allows to develop a backpropagation-style learning algorithm [8],
we use the Catmull-Rom-based spline and the expression (3) is
simply rewritten as
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where u€ [0, 1] and Qi+ m=0,...,3 are the four control points for

each curve tract. Such spline schemes are called local schemes,
as the shape of the curve in the i-th tract is affected only by its
four control points, so that the curve can be locally modified
without influencing distant tracts. Eq. (4) represents the neuron
output for the i-th tract.

The proposed neuron is composed of a classical linear
combiner, which performs the weighted sum of the inputs, and of
two blocks (SG1 and SG2) which implement the spline adaptive
activation function (see Figure 3).

The block SG1 performs the mapping of the linear combiner
output to the parametric domain, while the block SG2 computes
the neuron output by using the activation function’s control
points, stored in a lock-up table (LUT), and the polynomial
coefficients of Eq. (4). The learning algorithm and the extension
to complex-valued signals can be found in [8-10].
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Figure 3. The neuron scheme based on the Catmull-Rom spline
adaptive activation function with the internal structure of the SG2
block

In our architecture, both ASSN1 and ASNN2 are complex-valued
and trained using a database of several speech signals sampled at
16KHz, following the scheme shown in Figure 4. The ASSN2
however is trained only on voiced frames through the use of a
simple voiced/unvoiced selector.
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Figure 4. Scheme of the system used for training the two neural
networks. V/UNV is a voiced/unvoiced selector and §,, [I’l] is
the original wide-band speech signal.

3. EXPERIMENTAL RESULTS

Several different experiments have been carried out with various
combinations of networks and signals. Here are briefly presented
some results obtained with the following experimental setup:

e 64 point Hanning windows with an overlap of 32 points;

e 64 points complex FFT/IFFT;

e acomplex ASNNI1 with 12 inputs and 2 outputs, with Ax=1
and 40 control points for each neuron [8] for the recovery of
the lower band;

e a complex ASNN2 with 12 inputs and 19 outputs, with
Ax=1 and 40 control points for each neuron [8] for the
recovery of the higher band (voiced sounds);

e an LPC of order 8 for the recovery of the higher band
(unvoiced sounds) followed by a rectifier and a high-pass
filter;

e  several male and female telephone speech signals.

Some results in terms of SNR (Signal-To-Noise ratio considering

as noise the difference between the original wide-band speech

and the signal itself) are reported in Table 1. Figure 5 shows the
time-frequency plots of the original narrow-band signal, the
original wide-band signal and the output of the proposed system.

Note that the low frequency recovery is very good, while the
recovery of the high frequency contents is less efficient
especially when unvoiced sounds are involved. This behavior can
be better realized in Figure 6 that shows the typical spectra of
particular voiced and unvoiced sounds.

The proposed system is able to sensibly improve the quality of
the perceived speech, as indicated by the SNR indexes. The
output speech sounds much better than the original telephone
counterpart, although not as good as the original wide-band
version.

TABLE 1. Performance of the proposed SQE system: global
Signal-To-Noise ratio (SNR), segmented with 64 point windows
(SNR segm), maximum (SNR max) and minimum SNR (SNR
min) over all the windows.

Original narrow-band Output of the SQE
speech system
SNR 2.688722 dB 14.695422 dB
SNR segm 2.715295 dB 12.903535 dB
SNR max 23.931820 dB 39.284490 dB
SNR min -11.765533 dB -10.252285 dB
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Figure 5. Time-frequency plots of speech signal containing utterances from different female speakers: (a) original narrow-band signal,
(b) output signal of the proposed SQE system; (c) original wide-band signal.
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Figure 6. Comparison of the original wide-band spectra of different speech sounds (black solid line) with the corresponding outputs from
the SQE system (grey solid line): (a) voiced; (b) nasal; (¢) unvoiced stop; (d) unvoiced.



