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ABSTRACT 

The aim of this paper is to present a new cost func- 
tion for blind deconvolution of non-minimum phase 
systems. The proposed criterion arises as a natural 
consequence of a fundamental theorem proved by Ben- 
veniste, Goursat and Ruget [3], and appears to be the 
weighted square of the difference among two spectra, 
thus its minimization leads to a weighted least-squares 
blind deconvolution technique. In order to assess the 
new theory some simulation results both on ideal (noise- 
less) and noisy channels are presented. 

1. INTRODUCTION 

In digital system deconvolution, the problem of recov- 
ering a source sequence s(t) distorted by a physical 
system (channel), from observations of system’s output 
e(t) only, is dealt. The same problem is termed blznd 

[2, 3,4, 51 when th e impulse response h of the system is 
unknown and the source signal is not observable. The 
channel’s linear model writes: 

z(t) = n(t) + v(t) , (1) 

where s’((t) is the input sequence, and v(t) is an addi- 
tive noise whose principal sources are additive channel 
noise, crosstalk and sampling errors [9]. A linear filter 

described by its impulse response w’ deconvolves h’ if it 
reverses the effects produced by h’ on the source signal. 
Denoting by Z(t) the observed sequence, the output of 
the deconvolving system may be written as: 

z(t) = zz’T(t)Lz(t) . (2) 

A schematic of the channel/filter chain is depicted in 
Figure 1. 

When h’ and s(t) are unknown, the filter response 
& such that z(t) equals s(t) except for a finite delay 
and a scale factor, has to be blindly identified [2, 3, 91. 
Moreover, the deconvolution problem is particularly 
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Figure 1: Channel/filter chain and global system. 

difficult to solve when h’ represents a non-minimum 
phase system. In fact, denoting by Hnmp(qml) the sys- 
tem transfer function, by a known circuit theory result 
it is possible to write: 

fLlnlp(4J-1) = Hmp(q-l)&p(P-l) , 

where H ,p(q-l) represents the minimum phase part of 
Hnmp(q-‘), and Hap(qml) denotes the remaining all- 
pass part (here ‘rq-l” denotes the unit-delay opera- 
tor). By using classical second-order methods involv- 

ing lHnmp(q- )I , t ’ ’ i is impossible to invert the all-pass 
part of the system, thus its deconvolution may not be 
attained; higher-order methods are hence needed. Fur- 
thermore, when h’ is non-minimum phase, the inverse 
H,$,,(q- ‘) is unstable and real-time deconvolution is 
not allowed [5], therefore the inverse has to be approx- 
imated by an all-zeros function, that is an FIR decon- 
volving filter allowing on-line deconvolution with a neg- 
ligible delay. On the other hand, every time an FIR de- 
convolving filter is used, an approximation error occurs 

[51. 
Since the pioneering work of Sato (see [3] and ref- 

erences therein), several blind deconvolution methods 
have been developed and applied to solve communica- 
tion [2, 31, geophysical measurements [4, 81, and blind 
image restoration [6] problems. Particularly, much re- 
search has been carried off to develop both suitable 
filtering structures [l, 4, 5, 71 and cost functions [2, 8, 
9, lo]. In this paper a simple transversal filter as de- 
picted in Figure 2 is used, while the principal aim is 



Figure 2: Schematic of a causal FIR filter. 

to develop a new cost function. First we recall a fun- 
damental theorem proved by Benveniste, Goursat and 
Ruget [3], then we use its consequences for defining a 
Weighted Least-Squares cost function whose gradient- 
based minimization algorithm may be used for adjust- 
ing the filter impulse response. Then we show computer 
sumulations for assessing our theoretical analysis. 

2. WEIGHTED LEAST-SQUARES 
DECONVOLUTION 

By using our notation, a fundamental theorem that the 
modern system deconvolution theory is based on, can 
be restated as: Conszder a source sequence s of inde- 

pendent, zdentzcally distrabuted random variables wath 

drstrzbution P,* P, being symmetrac wath finzte vari- 

ance, and a sequence gauen by x = hT.?‘. Moreover, 

consader a system described by ats impulse response 2u’ 

such that the distrabutaon of the output random varzable 

2 = zZTS as still P,. Denote with ij the source-to-output 

ampulse response (see Fagure l), and assume that the 

distributaon P, as non-Gaussian. Then i = f identity 
except for a passable delay. (Benveniste, Goursat and 

Ruget, L3l.j 
Clearly, the mai_n idea underlying this theorem is 

that 6 deconvolves h when, and only when, the distri- 
bution P, of z(t) equals the source distribution. This 
shows that the following cost function may be consid- 
ered: 

cg (G) d:f 
I 

+w Wz(C; 4 - Ps(Ol* WI3 dC , (3) 
-cc 

where “*” denotes the convolutional product. It de- 
serves to note that given a random process x(t) the 
probability distribution of z(t) depends upon the cur- 
rent configuration of the response w’(t), thus we denote 
P, as P, (z; w’). CB has been designed as a proper mea- 
sure of distance between the probability density func- 
tion (pdf) of the source signal s and the pdf of the out- 
put of the deconvolving filter. When such a distance 

vanishes the FIR filter deconvolves its input x. Note 
that CB contains a weaghtang kernel k(z), which has 
been introduced to provide a suitable error low-pass 
filtering, as will be clarified in the following. 

2.1. Algorithm derivation 

Expression (3) is not easily tractable, therefore we need 
to transform it in some way. By using the Parseval 
theorem and some Fourier transform properties, CB 
can be rewritten as (“j” denotes the imaginary unit): 

+m cB(ti) = 
s 

14,(w; G) - ‘IQ.#]1<(~)]2dw(4) 
-03 
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Ii(w) dzf 
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The structure of the cost function CB (5) is the weighted 
square of the difference among two spectra, thus we call 
the present method Weighted Least-Squares Bland De- 

convolution. The kernel Ii(w) makes the criterion CB 
better suited to data, in that it smoothes the effects of 
rounding and sensor errors and avoids strong variations 
of 19, - 9,]. 

Here it is supposed that functions Q,(u; 6) and 
9, (u) admit expansions: 

-km 1 d”Q, 
Qz(u;fi) = c --Jdu”(O’tqU” , 

n=O . 

+O” 1 d”\Ir, 
?ITs(u) = c -- 

n=. n! du” 
(O)zP . 

From the above expressions it follows that: 

!P,(u;G) -\E,(u) = ~?&(G)tP ) (5) 

where E[.] denotes mathematical expectation. Using 
expression (5) in equation (4) yields: 

(6) 

def 

I 

+m 

1, = wp]K(w)]2dw , 
-co 

where “.*” denotes complex conjugation. Note that as 
IA’(w)] is symmetric, the integral 1, vanishes for odd 
values of p. 



It is important to note that formula (6) is exactly 
equzvalent to the definition (3). Now a suitable approx- 
imation of expression (3) can be obtained by limiting 
in (6) indexes C and h by positive integers L and H. 

Besides, in practice momenta E[z”] have to be replaced 
with their estimates. Formally, as a suitable approx- 
imation of cB(&) the following function may be con- 
sidered: 

cB(G) sf 5 ~~c,h[mk)(~)-m!‘)][mlh)(zi)-m!h)] , 

e=o h=O 
(7) 

where m?‘(G) d eno t es an estimate of the momentum 

E[zn], ms (n) is the known momentum of order n of the 
source signal s(t), and: 

(8) 

In order to estimate E[z”], simple recursive low-pass 
filters may be used. They are described by: 

Amp)(t) = ,B[?‘(t) - mp)(t - l)] , n 2 1 . (9) 

The smoothing parameter ,f3 should belong to IO, l[. In 
order to minimize recursively C?‘B with respect to the 
filter weight vector 6, the gradient a(?n/ati is needed. 
Straightforward calculations show: 

a& 
-= 
&ii 

From (9) it follows that: 

drn?) 

1 

p.n.p-1 
-= 

for 72 2 1 , 

dz 0 for 72=0, 

thus the gradient steepest descent cost minimization 
adapting rule: 

in this case writes: 

AG = -rP z Ge,h {[zeml [mih) - mih)]+ 
e,h=l 

+hzhdl [m, (e) - m~eq 5 . 
> (11) 

In the above equation y is a positive learning stepsize. 

2.2. Some implementation details 

In practice it is much more easy to assume H = L 

equal to a positive integer M. From equations (8) and 
(9) it is easy to verify that for any (!, h) E { 1, , M}2 
the symmetry property Ge,h = Gh,e holds true. Hence, 
defining: 

I) dAf 2-/P , ml:) d&f mp) - my) , Me h dzf e. Ge h I ) 

equation (11) may be rewritten, equivalently: 

Ati = -~~~~ F M~,hze-‘rn~~) . 

e=o h=O 
(12) 

It deserves to remark that the fundamental result by 
Benveniste, Goursat and Ruget holds under the hy- 
pothesis that the source distribution is a symmetrac 

function. Here we suppose for simplicity that this sym- 
metry property implies p,(E) = p, (-E). Hence, from 

definition of momenta my), it follows that rnp) = 

0 for n odd. 
Finally, consider the following choice for the weight- 

ing kernel: 

k(z) = exp -g 
( > 

* K(w) = exp(-w2) . (13) 

This kernel gives X2,,, = &a. 

3. COMPUTER SIMULATIONS 

In support of the proposed approach, simulation results 
obtained with the following data are presented: 

l as vector h’ the sampled impulsive response of 
a typical non-minimum phase telephonic chan- 
nel [3]: Hchan(q) = -O.O174q-’ + 0.0522qM3 + 

0.0174q-4-0.5826q-5-0.0522q-6+1.0043q-7+ 

o.0130q-~+o.3522q-~+o.0174q-10+o.0957q-1~+ 

0.0130q-12+0.0217q-13+0.0087q-14, and as de- 
convolving structure a transversal filter with 21 
weights (as in [3]); 

. as learning parameters: L = H = M = 4, p = 

0.001 and y = 4; 

l as source sequence a random signal uniformly dis- 
tributed within [-fi, &I, and for G(O) a null 
vector except for the 10th entry equal to 1. 

momenta rnr) were estimated by using formula 

= (~,‘~~“s:)/lOOOO. As performance index we 

True 

rnp) 

used the Inter-Symbol Interference (ISI), defined as in 

PI: 



where i denotes again the convolution between the im- 
pulse response of the channel and the impulse response 
of the equalizing filter, and gmax denotes the entry of i 
having the maximal value. 

Figure 3 shows the IS1 computed at any epoch (1 
epoch = 200 samples) and the convolution product be- 
tween the channel impulse response and the filter im- 
pulse response after 100 epochs, both averaged over 10 
realizations of the source sequence for an ideal (noise- 
less) channel (i.e. u(t) = 0). Perfect equalization should 
imply a unique central bar on the convolution graph, 
but in a real-world context some interference residuals 
of course must be taken into account. Figure 4 shows 
instead the averaged IS1 and convolution product for a 
noisy channel, when y(t) is a zero-mean Gaussian noise 
of variance 0.01 that corresponds to a signal-to-noise 
ratio SNR=20dB. 
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Figure 3: Simulation with an ideal (noiseless) channel. 

Figure 4: Simulation with a noisy channel. 

4. CONCLUSIONS 

In this paper a new cost function for blind equalization 
of non-minimum phase systems has been presented. 
The new cost function is equal to the weighted square 
difference among characteristic functions of the source 
signal and of the equalizing filter output, thus its min- 
imization leads to a weighted least-squares method. 
Simulation results performed both on an ideal and a 
noisy channel show the effectiveness of the proposed 
blind equalization technique and its good robustness 
against noise. 
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