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ABSTRACT

Speech recognition is usually regarded as a problem in the
field of pattern recognition, where one first estimates the
probability density function of each pattern to be
recognized and then uses Bayes theorem to identify the
pattern which provides the highest likelihood for the
observed speech data. In this paper, we will take a
different approach to this problem. In speech recognition,
the goal is communication of information by voice and we
will discuss the basics of speech recognition from a
communication perspective. The speech signal at the
acoustic level has a bit rate of 64 kb/s but the underlying
sound patterns have an information rate of less than 100
b/s. What is the role of this high bit rate at the acoustic
level? We will discuss the principles of decoding patterns
that are submerged in an ocean of seemingly irrelevant
information.

1. INTRODUCTION

Significant progress has been made during the past several
years in the field of automatic speech recognition and the
speech recognition technology has advanced to a level
where it is being used in many applications, such as
telephone call automation, automatic transaction
processing, and dictation. But, most of this success has
come from developing applications that work only in
specific tasks or speaking environments. We are still far
from reaching the goal of creating applications where voice
communication provides an easy-to-use interface to
computers in the same manner in which two people talk to
each other. Will our current research directions lead us to
the above goal? What can be done to move faster towards
this goal? In this paper, we take a fresh look at the problem
of automatic speech recognition, examine critically the
fundamental underpinnings of the present technology, and
seek to provide a new way of approaching the solution of
this important problem.

2. SPEECH RECOGNITION AS A PATTERN
RECOGNITION PROBLEM

Many different approaches to automatic speech recognition
have been proposed; these include acoustic-phonetic
theory, statistical pattern recognition, and neural networks.
The most successful approach so far has proven to be the
one based on statistical pattern recognition [1]. The pattern

recognition approach is illustrated by a simplified block
diagram shown in Fig. 1.
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Fig. 1. Principal functions of a speech recognizer

In the first step, acoustic analysis is performed on the
speech signal using a sequence of windows, resulting in a
set of acoustic parameters once every few ms. Usually,
some form of spectral analysis, providing a smooth
envelope of the speech spectrum, is considered to be the
preferred method of acoustic analysis. It is not clear that
spectral analysis is the right choice to perform acoustic
analysis. It is well known that intelligibility of speech
produced by vocoders that use only spectral parameters is
significantly lower than that of natural speech; only those
speech coders that use information related to both
excitation and spectral envelope are able to produce speech
with high intelligibility. We will return to this point later
in the paper.

In the second step, the set of acoustic parameters for
the unknown speech are compared to a stored set of
acoustic patterns derived from a large collection of labeled
speech utterances from many speakers using an HMM-
based training procedure. This comparison provides a set of
likelihood scores representing the similarity between the
unknown pattern and each of the stored patterns (or some
combination there of).

Finally, in the last step, the likelihood scores are
augmented with higher level knowledge about the speech
utterance derived from a language model, the context, or
task semantics, to produce the recognized pattern (or set of
patterns) with the highest likelihood score.

Let us examine the second step, namely computation
of likelihood score, in more detail. It is assumed that a
specified word sequence w produces an acoustic parameter
sequence y with a probability density function P(w|y). The
problem of associating an arbitrary pattern y to a word
sequence is solved by using Bayes’ rule of conditional
probability. The probability of error in recognizing a
pattern is minimized if the recognized word string w is
selected so that P(w|y) is maximum [2]. Using Bayes



theorem, one can write
P(w|y) = P(Y|1:V)P(W)
)

The conditional density function P(y|w) is often called the
likelihood function. In the pattern recognition approach, the
decision problem is posed in probabilistic terms, assuming
implicitly a complete knowledge of all relevant
probabilities. As a practical matter, the conditional
probability densities are not known. Usually, the unknown
probability densities are estimated from a training set. In
practice, this does not work well. Often, one tries to salvage
this impossible situation by assuming that the form of the
probability density is known (unrealistic assumption) and
only some of the underlying parameters of the densities are
unknown and can be estimated from the training data.
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Fig. 2. Probability densities of log likelihood: (a) with significant
overlap, (b) with small overlap, and (c) with almost no overlap
between the densities for the correct and incorrect classes

The likelihood P(y|w) for a given w varies as a
function of y. Let us consider the probability density
function of likelihood (or log likelihood). We will consider
3 cases. The first case is illustrated in Fig. 2 (a) which
shows the density functions of the negative of log
likelihood, namely -logP(y|w), for the correct and the
incorrect classes. In this case, there is a significant overlap
between the two densities which will result in significantly
inaccurate recognition of word sequences. That is not a
desirable situation. Let us consider another example
illustrated in Fig. 2 (b) where the overlap between the

probability densities is much smaller. The recognition
errors are contributed by the region where the density
functions overlap; the non-overlapping parts of the
probability density functions do not influence the errors.
Since the overlapping region in Fig. 2 (b) is small, the
shape of the density functions plays a minor role in
determining the recognition errors. In the third case
illustrated in Fig. 2 (c), there is almost no overlap between
the two density functions and therefore the shape of the
density functions is irrelevant in deciding about the identity
of the unknown pattern. It is therefore interesting to note
that the shapes of both the density functions of the log
likelihood and P(y|w), which will produce little or no
recognition errors are irrelevant. What matters is that the
density functions of the log likelihood for the correct and
incorrect classes are well separated and do not overlap.

For reliable speech recognition, the density functions
of the likelihood must be narrow, although the acoustic
patterns y for any w might be spread over a large region in
the acoustic space. Therefore the central problem in speech
recognition is not how to estimate P(y|w), but to ensure
that the density functions of the likelihood are localized and
do not overlap. The theory of statistical pattern recognition
is built around the conditional probability density function
of y, namely P(y|w), but what really matters is the
probability density function of the likelihood P. The
emphasis on estimating density functions P is completely
misguided. The density functions P(y|w) are beyond our
control, but the density functions of the log likelihood can
be designed for accurate speech recognition. So far we
discussed the statistical approach to speech recognition, but
let us now look at the speech recognition problem from a
communication perspective.

3. ASR: A COMMUNICATION PERSPECTIVE

Automatic speech recognition (ASR) is concerned with
communication of information by voice: to communicate
to a machine what a user wants the machine to do. Figure 3
shows ASR as part of a communication system. The
signal x(t) represents the message to be transmitted. The
message could be a string of text or in some other form.
The significant point is that the actual message is the one
selected from a set of possible messages. The message x(t)
is transformed by the human speech production system to
the speech signal s(t) which is transmitted on a
communication channel to the speech recognizer where the
signal s(t) is transformed to another signal y(t), the
received message. In general, y(t) will not be identical to
x(t), but the difference between the two must be kept
small for proper communication.

Now here are the problems. First, the
transformation F from x(t) to s(t) is not one fixed
transformation but differs widely from one speaker to
another. Second, the communication channel adds noise,



reverberation, etc. and can introduce spectral distortions.
The speech recognizer must be able to handle all this extra
variability in transforming the speech signal to the
received message y(t).
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Fig. 3. Speech recognition: a communication perspective

The information rate of the speech signal s(t) is
much larger than that of the message signal x(t) -- 64 kb/s
for s(t) compared to about 50 b/s for x(t). This large
amount of redundancy in the speech signal is necessary to
cope with large speaker-to-speaker variability and the
distortions introduced by the communication channel.
Robustness in communication is always achieved by large
expansion in the bandwidth, such as in FM, PCM, and
CDMA systems. The speech signal is another example,
where an extraordinary amount of robustness is
accomplished by converting a message signal x(t) with a
low information rate to a speech signal with a high
information rate. The human vocal tract generates a speech
signal with a bandwidth of 8 kHz, whereas the underlying
sound patterns have a much lower bandwidth in the vicinity
of 30 Hz or so. The task of the ASR is to extract a very
small amount of information (about 50 b/s) that is relevant
for identifying sound patterns in speech in the presence of a
large amount of irrelevant information in the acoustic
waveform. How can we determine the amount of
information related to sound patterns that can be extracted
from the acoustic signal?

4. Channel Capacity of Acoustic Parameters

We will obtain a crude estimate of the information that can
be used to distinguish sound patterns in the speech signal.
We will follow an approach similar to one used by
Shannon in deriving the capacity of a channel in the
presence of noise [3,4]. Let N represent the variance of
““noise”’. The noise can be determined if we have a
database of speech utterances, where each sound pattern is
identified and labeled. We will first assume that the
acoustic parameters are uncorrelated and the variance of
each parameter is the same.

A speech segment of duration T and bandwidth B can
be represented by 2BT parameters or by a point in 2BT-
dimensional hyperspace. Let n=2BT. For a hypersphere
of high dimensionality, almost all of the volume is very

close to the surface. Therefore, for large values of n, the
points for speech segments associated with the same sound
pattern will lie very close to the surface of a hypersphere of
radius VnN and a speech vector corresponding to a sound
pattern will be contained in a hypersphere of radius VnN
around a point representing that sound. Similarly, speech
vectors corresponding to different sounds will be
contained in a hypersphere of radius \/n(S +N), where S
represents the variance of the ‘‘signal”’. The number of
sound patterns that can be distinguished at the receiver
equals the maximum number of non-intersecting
hyperspheres of radius VnN_that can be placed in a
hypersphere of radius \/n(S +N) in 2BT dimensions. The
number is clearly [(S+N)/N1"2. The number of bits of
information (channel capacity) is given by
C = (n/2)log, [(S+N)/N].

These sphere packing ideas are illustrated in a geometrical

manner in Fig. 4.
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Fig. 4. Geometrical interpretation of sphere packing
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Let us consider the case when both signal and noise
variances are different for each acoustic parameter. Let Sy
and N, represent the signal and noise variances,
respectively, for the kth parameter. Then the channel
capacity is given by

C = (n/2) ZIng [Sk +Nk]/Nk]
k

As an illustration, we apply now these ideas to
determine the information conveyed by spectral parameters
in distinguishing speech sounds. We have used a subset of
DARPA TIMIT continuous speech database [5] which is
available with all the phonetic segments labeled by human
listeners. We have used 25 mel spectrum parameters as the
acoustic parameters obtained by processing speech filtered
to a bandwidth of 4 kHz using 20-ms Hamming window
spaced at 10 ms intervals.

The full TIMIT database contains a total of 6300
utterances, 10 sentences spoken by each of 630 speakers
from 8 major dialect regions of the United States. We
selected a subset of the database corresponding to the
northern dialect region, which consists of 1020 utterances



spoken by 102 speakers (71 male, 31 female). We grouped
the various phones into 40 classes. Each frame of mel
spectral parameters represents a speech segment of 20 ms
duration. We combined successive frames spaced at 10 ms
intervals to produce a super-frame of parameters for speech
segments with duration ranging from 20 ms (2 frames) to
130 ms (12 frames).
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Fig. 5 (a). Information rate (bits) versus duration of segment
Fig. 5 (b). Recognition accuracy (%) versus duration of segment

The signal-to-noise ratio and the total number of bits
of information were computed for each super-frame using
the procedure outlined earlier for computing the channel
capacity . These results are shown in Fig. 5 (a) which
shows a plot of bits versus the duration of the speech
segment in ms. The number of bits was 2.4 for a single
spectral frame of 20 ms and 6.5 for a segment with a
duration of 130 ms (12 spectral frames). We also
determined the recognition accuracy as a function of
duration. These results are shown in Fig. 5 (b). The percent
recognition accuracy of a single spectral frame is 28 % for
a segment of duration 20 ms and 64 % for a segment with a
duration of 130 ms. Although it might appear that 6.5 bits
of information (represented in the 130 ms long speech
segment) should be sufficient for reliable recognition of 40
sound classes used in the study, a recognition accuracy of
only 64 % was achieved. The reason for this result is that
the channel capacity formulation is valid only as a limit
when the number of dimensions n=2BT is infinitely large.
In our case, the mel spectrum provided only 25 highly
correlated parameters. The effective dimensionality in this
case is far less than 25. The same holds for successive
spectral frames that are spaced 10 ms apart.

6. DISCUSSION

In this paper, I have raised many issues concerning the
application of statistical pattern recognition techniques to
the problem of automatic speech recognition. These
techniques are useful only when the various patterns cannot
be distinguished, requiring the selection of the best choice
according to some suitably chosen cost function. Speech
recognition systems must be designed to be accurate, and
recognition errors, if any, must be very few and sparse. The
probability density functions of log likelihood for different
classes must be non-overlapping to achieve accurate speech
recognition. In such a situation, pattern recognition
techniques that require careful estimation of probability
densities for the observed acoustic parameters are
irrelevant.

We have outlined an approach that makes it possible
to determine how much information is available in the
speech signal to distinguish between different sound
patterns. Our results indicate that 25 spectral envelope
parameters do not contain sufficient information to
distinguish between various sounds in speech accurately,
even when the parameters are combined over a time
interval of 130 ms. To achieve accurate phone recognition,
it will be necessary to move beyond spectrum envelope.
As 1 indicated earlier, speech coders that used only the
spectral information suffered from serious loss of
intelligibility and it was found necessary to add fairly
detailed information about the excitation in the form of
multi-pulse excitation to produce speech that was close to
the natural speech. I believe that in order to achieve
accurate recognition, one has to use acoustic parameters
that are closely related to the speech waveform rather than
the spectrum. The goal should be to find a representation of
speech that can provide 10 bits of information to
distinguish between 40 speech sounds.
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