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ABSTRACT 

The aim of this paper is to present a non-linear exten- 

sion of the Sanger’s Generalized Hebbian Algorithm 
to the processing of complex-valued data. A possible 
choice of the involved non-linearity is discussed recall- 
ing the Sudjianto-Hassoun interpretation of the non- 
linear Hebbian learning. Extension of this interpreta- 
tion to the complex case leads to a nonlinearity called 
Rayleigh function, which allows for separating mixed 
independent complex-valued source signals. 

1. INTRODUCTION 

Independent Component Analysis (ICA) of complex- 
valued data [2, 3, 81 . 1s a meaningful problem that has 
been investigated in a very few papers, while much 
more attention has been paid to develop several differ- 
ent algorithms for performing ICA of real-valued data. 
Among others, those methods based on non-linear ex- 
tensions of Principal Component Analysis (PCA) have 
raised a lot of interest in the Neural Network com- 
munity (see for example [5, 71 and references therein). 
It has been proved by many papers that adding non- 
linearity to linear PCA neural makes them able to im- 
prove the independence of their outputs so as to al- 
low blind separation of independent sources [5, 71. Re- 
cently, some attempts have been made in order to ex- 
tend the best known PCA algorithms to the complex- 
case. In [l] Chen and Hou presented an heuristic com- 

plex version of the well-known APEX algorithm [4], 
while in [6] Fiori and Uncini proposed a formal deriva- 
tion of a large class of complex PCA neural algorithms 
containing, as a special case, the one found in [l]. 

In this paper we formally derive a new learning algo- 
rithm as a non-linear complex generalization of GHA, 

and discuss the choice of the non-linearity under the 
theoretical framework proposed by Sudjianto and Has- 
soun [lo] extended to the complex case. Then we show 
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how a particular non-linearity, called Rayleigh func- 
tion, allows the network to separate out mixed inde- 
pendent complex-valued source signals. 

2. COMPLEX NONLINEAR 
GENERALIZED HEBBIAN LEARNING 

We consider a complex-weighted single-layer neural net- 
work, formed by linear units, which performs non-classic 
Principal Component Analysis of complex-valued data. 
The network is described by the input vector x E CP, 

a set of weight-vectors wk and outputs yk dAf wfx, 
where cc.H” denotes conjugate transpose. The number 

of neurons of the network is denoted here with m 5 p. 
Let the following criterion be defined: 

J(wk) dsf u(wk) + L(wk) . (1) 

The criterion /Y(.) contains a nonlinear function of the 
lath neuron’s output and is defined as follows: 

u(wk) dGf ‘%[f(W,HX)IWk] , (2) 

where the symbol E,[fIw] denotes conditional expec- 
tation of f with respect to x subject to the hypothesis 

w, hereafter simply written in short notation as E[f]. 
The f(.) is a real valued, positive function of complex- 
valued argument, and by definition is supposed of the 
form: 

f(z) Sf g(lzl) ) z E c ,g : 72: + 72; , (3) 

with g(.) being continuously differentiable almost ev- 

erywhere, non-decreasing with a unique minimum in 
IZI = 0. 

As far as PCA is concerned, the adjoint function 
L(.) is used for embedding on the criterion (1) the nec- 

essary constraints of orthonormality of the weight vec- 
tors, namely w:wp = 0 if a # ,B, and wtw, = 1. 
Note that orthogonality conditions can be rewritten 

more conveniently by observing that wzwp = 0 if and 



only if Re{wtwp} = 0 and Im{wfwp} = 0, thus the 
function L(.) may be expressed as: 

k-l 

L(Wk) dsf (Tkk(wfwk - 1) + c Re{a&wfwj) , (4) 

j=l 

where a set of complex Lagrange multipliers {akj} has 
been introduced, and superscript “.*” denotes conjuga- 
tion. 

To look for optimal weights wzpt maximizing the 

criterion (l), a Gradient Steepest Ascent (GSA) learn- 
ing algorithm is employed here. By definition, the gra- 
dient of a real-valued function F(w) with respect to a 

complex-valued vector w is intended as: 

aF(W) def aF(u,V) 
~ = 

dW au 

+ ph v) 

av ’ 
(5) 

where i dAf fl and u + iv = w. First, the aim is to 
evaluate: 

dU(wk) 

dwk 

d9(bkl) abkl = E . 

+/kt dwk 1 [ s’(lykl)alYkl 

awk 1 
(61 . , 

From definition (5) it follows that ]yk] $$ = y;x, thus 

the expression of the gradient of the objective function 
U(.) is: 

(7) 

Moreover, the gradient of L(wk) with respect to wk is 
found to be: 

aL(wk) 
k-l 

-= 
dwk 

2gkkWk + c $+j . (8) 

j=l 

Thus, by gathering equations (7) and (8) we obtain: 

aJ(wk) 

F = E [T&j +b&wk +gU&Wj 

(9) 
The optimal multipliers as functions of wk can be 

found by solving equations wf-$& = 0 for different 
values of the index h. In this case we have: 

E [g~&h] + 2akkWfWk +@jWfWj = 0, 

thus letting h = k gives uiEt = -$E[g’(]yk])]yk]], while 

assuming h # k leads to uLPht = ---IS [w!/k $1. BY 

plugging these expressions into equation (9) the for- 

mula for the optimal gradient of J is easily found to 

(10) 
Finally, by defining the projection operator Pk dzf I - 

C,“=, wlwr and G(C) dzf w$I, with c E C, the 

new complex non-classic counterpart of GHA learning 
rule writes: 

dwk 
- = PkE[G(yk)y$X] , k = 1,2,. . ., m 

dt 
(11) 

The factor E[G(yk)ytx] may be interpreted as a com- 

plex non-classic Hebbian term common to each neuron, 
while projector Pk is a deflating factor which pushes 
each weight-vector wk into a different subspace. About 

function g(.), it can be chosen on the basis of the spe- 
cific task for which the network is used. It deserves to 
note that assuming g(u) = fu” yields G(.) = 1, thus in 
this case and in presence of real-valued data algorithm 
(11) coincides to well-known GHA rule by T.D. Sanger 

PI. 

3. THE SUDJIANTO-HASSOUN 
INTERPRETATION 

In [lo], Sudjianto and Hassoun considered the problem 

of maximizing a criterion J(w) dgf E[S2(wTx)] subject 
to the restriction wTw = 1, where y = wTx is the out- 

put of a single-unit real-weighted neural network and 
S(.) is a generic saturating sigmoidal function, for in- 
stance such that S(.) E [-l,+l]. The authors noted 
that maximizing the variance of a saturating function 
of y leads the neuron to prefer configurations w corre- 
sponding to values of S(y) concentrated near the ex- 
tremes -1 and +l. If the quantity z = S(y) is per- 
ceived as a new random variable with probability den- 
sity function qz(zlw), this makes U-shaped the distri- 
bution qz [lo]. The GSA learning rule for the neuron 
is: 

dw dJ 

dt = aw - = (I - wwT)E[!(y)x] ) (12) 

where e(u) dzf 2S’(u)S(u). Denote now by qy(ylW) the 
probability density function of the random variable y 

due to a configuration W, and with QY (~1%) its cumu- 

lative distribution function, namely: 

QY (YIW) ef 1’ w(ql*)dv . 
--co 

Assume then S(y) = 2Qy(y]%) - 1. In this case it 

is well known [lo] that z will be uniformly distributed 



within [-1, +l]. The central idea developed by Sud- 
jianto and Hassoun is that the learning rule (12) will 
converge to a weight vector surely different from W, 
since the rule seeks a U-shaped distribution of t, that 
is, a distribution that deviates away from a uniform 
one. In other words, the rule (12) behaves as a proba- 
bzlastac jilter. 

Consider now the extension of the previous theory 
to the complex case. Define the cost function: 

U(w) tzf Jw2(IYl)l , (13) 

for a complex weighted neuron with output y = wHx. 

Its GSA maximization under the constraint wHw = 1 
yields the learning rule: 

$=(I- wwHP w$ 1 [ 1 (14) 

that closely recalls equation (11) for k = l.In our case 
we can assume for S(]y]) a function like: 

S(lvl) = QIYI(IYI) sf I”’ q(q)dv t 

where q( .) represents a generic probability density func- 
tions. By equating (14) to (11) it is possible to find the 
relationship between q(.) and g’(.), that is: 

Ultimately it is clear that training each neuron of a 
linear complex-weighted neural network by means of 
the learning rule (11) with the non-linearity (15) causes 
the network to learn connection strengths that filter 
the outputs so that the probability density function of 
the output moduli ]yk] deviates away from q(.). In the 
next section it will be clarified how this principle could 
be employed for separating out independent complex 
signals from their linear mixtures. 

4. APPLICATION TO COMPLEX 
INDEPENDENT COMPONENT ANALYSIS 

Suppose input x contains a complex linear mixture of 
statistically independent signals [8], and that one of 
these signals is a Gaussian noise of the form v = T + is, 

where both r and s are zero-mean Gaussian random 
variables of variance u2. Then it is known that the 

modulus ]2r] follows the Rayleigh distribution: 

qR(U) = $exP -2 I(U) , 
( > 

where I’(U) is the unit step. Then by formula (15) we 
find: 

gk(U)=$[exp(-$)-exp(-$)]l?(u). 

Figure 1 depicts the Rayleigh non-linearity gk(u)/U for 

a unit noise power. In this case it is possible to express 

Figure 1: Rayleigh warping function for u = 1. 

the cumulative distribution function in closed form sim- 
DlV as: I 1 

&R(u)= I-exp 

By assuming in (11) the function G(yk) as the quantity 
5dlpp, it is then possible to separate out independent 

complex-valued signals mixed by a unitary operator. 
The general problem where generic linear mixtures are 
concerned can be solved by pre-whitening the data [2, 

81. 

5. COMPUTER SIMULATIONS 

As a numerical example, suppose input x E C4 is formed 
by a linear mixture of four independent signals ar- 
ranged in a vector s E C4. Signal si is QAM4 and 
sz is QAM16, both with small Gaussian phase devia- 

tion; signal ss is PSK, and s4 is a Gaussian noise as in 
[8]. The mixture is computed as x = MS, where M is 
a randomly generated 4 x 4 complex matrix. The first 
row of Figure 2 depicts the independent signals while 
second row shows the obtained four mixtures. 

By means of the Sudjianto-Hassoun principle, a lin- 
ear neural network with four inputs and four outputs, 
trained by the learning rule (11) with the Rayleigh non- 
linearity should be able to separate out the independent 
signals up to a phase shift and a random permutation 
(23 after mixture prewhitening. Simulation results are 

shown in Figure 3: The first row depicts the result of 
prewhitening performed by means of the well-known 

Laheld-Cardoso’s standardizing algorithm [8]; the sec- 
ond row shows the last 100 outputs of the network 
trained by (11) on the prewhitened data. The Fig- 



Figure 2: The four independent signals and the four 

mixtures of them. 

Figure 3: Network’s output after learning by rule (11 1). 

ure 4 depicts instead the histograms of the last 200 

samples of QR(IYII), . . , QR([Y&. 
Simulation results show that the network is able 

to recover the independent signals. The histograms 

QR(IY~I), QR(IYzI) and QR(IY~I) are in good accordance 
with the signals in Figure 3, while the presence of a 
peak in $1 on the histogram of Qn(]y4]) confirms that 
the fourth neuron cannot separate out the Gaussian 
noise and its output contains a mixture of the other 
source signals, as expected. 

6. CONCLUSION 

In this paper a new adapting rule for linear neural net- 
works as generalization of Hebbian learning has been 
presented. It provides a generalization in that it ap- 
plies to complex-weighted neural networks and embeds 
non-linearity in the classic Hebbian learning. A partic- 

ular choice of the non-linearity is discussed by recall- 
ing the Sudjianto-Hassoun interpretation of non-classic 
Hebbian learning extended to the complex-case. Nu- 

merical results confirm that non-classic (‘non-linear’) 
complex generalized Hebbian learning is closely related 

to Independent Component Analysis and Blind Source 
Separation. 

Figure 4: Functions Qn(.) histograms. 
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