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ABSTRACT

A procedure for parameter estimation of multicomponent
Polynomial Phase Signals is presented. This scheme, while
restricted to high SNR’s, has the advantage of being ex-
tremely simple. It is also insensitive to the equal-coefficient
identifiability problem of HAF (High-order Ambiguity Func-
tion) based methods. It poses, however, some restrictions
on the component amplitudes. Its performance in noise is
investigated, and confirmed with several examples.

1. INTRODUCTION

Polynomial-Phase Signals (PPS) have received a lot of at-
tention, due to their importance in fields such as radar,
sonar or communications. To estimate the parameters of
these signals, three main types of approach have been pro-
posed: tracking algorithms (e.g. [9]), algorithms based on
the now called High-order Ambiguity Function (HAF) [7],
and algorithms based on phase unwrapping and subsequent
polynomial fitting [10], [2]. The approaches based on track-
ing are inherently extensive to multicomponent signals; the
HAF based approaches have been satisfactorily extended to
multicomponent PPS signals [1], [3]; the much simpler al-
gorithms based on phase unwrapping remained limited to
the monocomponent case.

In this paper, we will extend the phase unwrapping
methods to the multicomponent case. An algorithm for
sequential extraction of the individual components is pre-
sented. This ”one component per cycle” type of behaviour
is in contrast with the HAF based approaches, characterized
by a ”one order of exponents per cycle”. While HAF has
difficulties with components with the same highest order
coeflicients, this method will have difficulties with compo-
nents of the same amplitude. Whenever possible, we will
use continuous signal notation, even when referring to sam-
pled signals. The paper is organized as follows. In Section
2, we will address the issue of unwrapping the phase of
multicomponent PPS signals. In Section 3, the sequential
extraction method is presented. In Section 4, the behaviour
in noise is investigated, and compared to the Cramér-Rao
bound by Monte-Carlo simulations.

2. PHASE UNWRAPPING OF
MULTICOMPONENT COMPLEX SIGNALS

eAmplitude and Phase decomposition. To achieve
uniqueness in the decomposition of observed (or computed)

complex signals ¢(¢) into real amplitude and phase func-
tions (c(t) = b(t) ej“a(t)), several authors tend to force b(t)
> 0. This choice of functions is perfectly in line with the
mathematical view of the complex plane, but it may have
adverse effects in the engineering field. If, for example,
the sequence under analysis results from the heterodina-
tion of a sinusoid, (t) = sin(wit) e*2%, imposing b(t) > 0
will give us a discontinuous phase function, with jumps of
£7 whenever t = nmw/w;. To avoid these false discontinu-
ities in the unwrapped phase, we should allow b(t) to be
negative. This means that, when unwrapping the phase of
a complex sequence resulting from the heterodination of a
bipolar signal, the uncertainty remaining after the atan(-)
is one of a multiple of 7, and not a multiple of 27. There
is another possible source of 7 discontinuities on the phase.
Sometimes, the vector resulting from the sum of the individ-
ual components will pass trough the origin of the complex
plane, forcing a jump of 7 in the overall phase. By con-
sidering a small perturbation in ¢(t), we can easily see that
these discontinuities are just the limiting process of a nar-
rowing high derivative zone, and should thus be preserved
in the unwrapped phase. To distinguish between the 7w dis-
continuities that should be preserved, and the ones that
the unwrapping procedure should eliminate, we can use the

estimate of ¢'(t):
¢ - m (S8, 0

c(t)

If a m discontinuity is, in fact, an attribute of the phase
function, and not a false discontinuity created by b(t), then
¢’ (t) will reflect this, with a w6(¢t) term. Otherwise, no such
term will appear in ¢'(t). When using (1), we can run into
numerical difficulties at points where b(t) = 0, but these
can be handled by slightly perturbing ¢(t). Since we will be
dealing only with signals of the form

K
c®) = bue (oo eent™),
k=1

with no multiplicative bipolar signal, all m discontinuities
will be features of the phase function, and the uncertainty
will be reduced to multiples of 27.

ePhase rate. Another source of discontinuities is the
reduction to principal values done by the inverse trigono-
metric functions, which, in the case of complex sequences,
leaves us with discontinuities of 27 radians. Eliminating
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Figure 1: Phase locus for two component signals.

these discontinuities is not a trivial task. One of the main
difficulties comes from the fact that the phase can change
by more than 27 between samples, even for properly sam-
pled signals. To see this, let us consider a simple signal,
constituted by two complex sinusoids and a DC term:

C(n) _ blej(a11n+a10) + b2€j(a21n+a20) +E. (2)

In the upper left plot of Figure 1, we represent in the com-
plex plane the sample for n = 0 by an asterisk and the locus
of all possible positions of the next sample by a solid line,
assuming that the signal was correctly sampled. The val-
ues for the parameters were by =1, b2 = 1.5, 0 < a11 <,
a1 — a11/1.8, alo — 71'/2, a0 — 371'/4, and k = 0.65€jﬁ/15.
The possible phase values for the second sample (as a func-
tion of a11) are represented in the upper right plot.

As can be seen, even though the signal is properly sam-
pled (az1 < a1 < m), the overall phase of the signal can in-
crease more than 27 radians between samples. This means
that phase jumps greater than 27 between successive sam-
ples can’t be automatically associated with principal branch
reduction, and may have to be left untouched in the un-
wrapped phase. It also means that between the phase an-
gles of two successive samples we may have hidden multi-
ples of 27 radians. Another disturbance comes from the
fact that, even if all components have positive frequencies,
the overall phase can decrease between samples, as can be
seen in the bottom plots of Figure 1. We note that it has
been pointed out that, for another class of signals, namely
the unimodular analytic signals, the overall phase is guaran-
teed to be monotonically increasing [8]. As in the case of the
7 discontinuities, help comes from the fact that, by using
(1), we can estimate ¢'(t) and, by integration, decide on the
correct multiple of 2. These two effects (rates of change
greater than 2m rad/samples, and negative rates even for
positive-frequencies-only signals), plus the existence of the
necessary 7 discontinuities are very good reasons why ¢’ (t)
should never have been interpreted as being the Instanta-
neous Frequency of a complex signal (analytic or not) [4],
[5].

eThe unwrapping algorithm. The unwrapping algo-
rithm to be used is thus very simple, and in the line of the
one proposed in [11], the differences being due to the fact
that we will be working in the time domain, and we will not

perform the adaptive integration. (i) As a first step, we will
estimate ¢'(t) with (1). To obtain reliable numerical deriva-
tives of c(t), a spectral procedure was devised, with proper
care being taken to avoid aliasing. We may encounter some
difficulties whenever the phase has a discontinuity, since the
numerical derivative will try to approach a é-function. We
will thus limit the maximum amplitude of the derivative
to a maximum of 2r rad/sample. (#¢) The phase angle of
c(t) is obtained with a four quadrant atan(-) function. The
phase of the first sample is considered properly unwrapped.
(737) An estimated unwrapped phase for the second sample
is then computed, by projecting the unwrapped phase of
the first sample with the local value of the derivative (as-
sumed to be the arithmetic mean of the derivatives at the
first and second sample). (iv) The unwrapped phase of the
second sample is then obtained by simply adding (or sub-
tracting) multiples of 27 to the principal value of its phase
until agreement with the estimate within . Steps (44)
and (#v) are repeated for every sample.

3. SEQUENTIAL EXTRACTION OF
COMPONENTS

The phase of multicomponent PPS signals has the interest-
ing feature of being dominated by the phase of the strongest
component. To appreciate this, let us consider a signal con-
stituted by one fixed frequency component, and one linear
chirp:

e(n) = blej(a12n2+a11n+a10) | byl tezrntazo) (3)

The unwrapped phase of this signal is represented in Figure
2, for the following set of parameters: by = 1.005, by = 1
(left plots), by = 1, b, = 1.005 (right plots), a1z =0.17438,
ai] — 0, aip — 0, as1 — 6.1734 x 1072, asp — 0. The phase
of the individual components are also represented (dashed
lines). Notice how the overall phase follows the phase of
the strongest component, even though the amplitudes of
the two components differ only in 0.5 %. Notice also how
important it was to leave the m discontinuities in place, and
how vital the estimate of ’(t) was to decide which way the
7 jumps took place. In this noise free and highly oversam-
pled case, we could easily continue to correctly follow the
strongest component up to ratios of amplitudes much closer
to 1. The practical limit will, in the end, be defined by the
decreasing width (and increasing height) of the peaks in
their way to become ¢ functions, since they can be missed
in the samples of ¢’(t). To further push this limit, we can
interpolate ¢'(t), and then properly integrate it, instead
of using the simpler mean derivative rule described above.
For signals with more than two components, the phase of
the strongest one will be followed if its amplitude is greater
than the sum of the amplitudes of the other components.
This selective behaviour of the overall phase allows us to
estimate the parameters of the strongest PPS component,
which will then be subtracted to the original data, and a
new unwrapped phase obtained, for estimation of the sec-
ond strongest component. The process will continue until
no more components are left. The choice of the best criteria
to decide when all components have been extracted is still
being investigated. One promising option is to terminate
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Figure 2: Unwrapped phase. Two component signal.

the recursion when the estimated amplitude of a compo-
nent falls below the treshold of uncertainty imposed by the
observation noise.

As can be seen in Figure 2, the existence of other com-
ponents will add interference to the unwrapped phase. If
the observation interval is long compared to the inverse of
the frequency difference between the components (this was
not the case in Figure 2), this interference will be approx-
imately zero mean, and can be dealt with by simply least
squares fitting a polynomial of appropriate order to the un-
wrapped phase (not equivalent, in this context, to ML esti-
mation). Some bias in the estimates will, however, remain.
The choice of the order of the polynomial is best dealt with
in the way suggested in [7] for the HAT: overestimate the
order, and compare the highest order coeflicient with the
Cramer-Rao lower bound for the variance of that param-
eter. Decide that an order overestimate took place if the
coeflicient is small compared to the square root of the CRB.
In practice, and for high SNR, the method seems to be very
insensitive to overestimates of the order. Denoting by G,
the estimated parameter for agm , we thus have the following
procedure: (i)Unwrap the phase; (i4)Obtain the estimates
for the phase parameters of the strongest component by
least squares fit to the unwrapped phase; (i7¢)Estimate the
amplitude of the strongest component, by least squares fit-
ting an exponential with the estimated phase to the signal;
(tv)Subtract the estimated component from the signal, and
start the procedure again, for the second component. After
having estimated the individual components, we can isolate
each one of them, in turn (by subtracting all the others from
the original signal), and estimate its parameters again [3].
This new estimate should be less biased, since the inter-
ference of the other components has been greatly reduced.
Convergence to the correct values is normally achieved after
a few iterations.

As an example, let us consider (Figure 3) a three compo-
nent signal, with b; = 1, by = 0.5, b3 = 0.4, a1, = 0.0016,
all — 0.05, a1 — 0.67, asl — 0.86, ajo — az — 420 —
as2 = azo = 0. In this case, one of the components crosses
the other two in the time-frequency plane. This fact does
not, however, hamper the performance of the extraction.
The fit was done with third order polynomials, to show the
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Figure 3: Three component signal.

negligible effects of order overestimation. After four itera-
tions, the obtained estimates were a; — [0, 0.0016, 0.0500,
0], a2 = [0, 0, 0.6700, 0], and a3 = [0, 0, 0.8600, 0].

4. PERFORMANCE IN NOISE

We can state our estimation problem as follows: we have a
sequence with the following format:

b1 ej (Zj\nﬁzo almtm> +

K
+ Z b ej (Zi\n/[io akmtm> + w(n),
k=2

c(n) =

where the components have been numbered by decreasing
amplitude order, b, > Zlf:(:n +1 bk, and w(n) is zero mean
complex white Gaussian noise with variance o2,. The SNR
for each component is defined as (bk)2 JoZ. Assuming that
we know M7, we wish to estimate b1 and the coefficients
a1m- To proceed, we can associate the noise term with the
component to be estimated, and then use the result of [10],
valid for high SNR, to transform it into an equivalent white
Gaussian phase noise v(n) with variance o2 = o2 /2(b1)%.
We will thus be left with the following model for the un-
wrapped phase of the first component:

My

p1(n) = Z armt™

m=0

+o(n) +i(n),

where i(n) represents the (zero mean) interference on the
unwrapped phase due to the joint effect of the other com-
ponents. Simulation results show that, if there is only one
interfering component and no unwrapping errors, i(n) is ap-
proximately distributed with density p(i) = %(L2 —i%) -1/2,
for —L < i < L, where L =~ %(1 - %)70‘0872. If there
are more interfering components in the signal, i(n) will
tend to become Gaussian distributed. The density func-
tion of the noise plus interference is thus dependent on the
number of components. In the case of a single interfer-
ing component, its variance will be approximately equal



Figure 4: Variance of estimates. Monocomponent signal.

to (the two terms are independent) o2 + o7, where o7 =

—9? [JO(‘*)L)]/&*)QLZO'

To evaluate the statistical efficiency of this estimator,
the variances of the estimated phase parameters in the case
of a single component signal were obtained by Monte Carlo
simulation and compared against the asymptotic Cramér-
Rao lower bounds [6] for several SNR ratios. Note that,
in this single component case, i(n) = 0. As can be seen
in Figure 4, the method approaches the CRB at medium
to high SNR. The nonlinear treshold is at approximately 8
dB, which shows that, in this single component case, the
unwrapping procedure performs similarly to the one pro-
posed by Djtiric and Kay in [2]. This was expected, since in
both cases derivatives (finite differences, in the case of [2])
are being used for unwrapping.

In the multicomponent case, the contribution of i(n)
to the overall variance of the noise plus interference term
will necessarily degrade the performance, and the Cramér-
Rao bound (computed considering only the contribution of
w(n)) will not be reachable. Worse then that is the fact
that, when Zl{:(:n 1 b approaches by, even a small contri-
bution of noise may create unwrapping errors, which will
render the results useless. In fact, the treshold region will
move to higher and higher SNR’s as Zl{:(:n 1 b approaches
by,. Both effects can be seen in Figure 5, where the same
three component signal of Figure 3 was used.

5. CONCLUSION

After proper unwrapping, the selective behaviour of the
phase of a multicomponent PPS signal allows sequential
estimation of the parameters of the individual components.
The extraction/estimation is done one component at a time,
while in the HAT based methods the sequence of estimation
is done by order of exponent. This implies that, while HAT
based methods have difficulties with multiple components
with the same highest order coeflicients, the present scheme
has difficulties with multiple components of the same am-
plitude. In fact, for successful extraction, a hierarchical
rule must be obeyed by the amplitudes of the several com-
ponents. The method is limited to the high SNR region,
and the required SNR will increase for increasingly similar

Figure 5: Variance of estimates. Three component signal.

amplitudes in the components.
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