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ABSTRACT 

The performance of well-trained speech recognizers using high 
quality full bandwidth speech data is usually degraded when 
used in real world environments. In particular, telephone speech 
recognition is extremely difficult due to the limited bandwidth 
of transmission channels. In this paper, neural network based 
adaptation methods are applied to telephone speech recognition 
and a new unsupervised model adaptation method is proposed. 
The advantage of the neural network based approach is that the 
retraining of speech recognizers for telephone speech is avoided. 
Furthermore, because the multi-layer neural network is able to 
compute nonlinear functions, it can accommodate for the non- 
linear mapping between full bandwidth speech and telephone 
speech. The new unsupervised model adaptation method does 
not require transcriptions and can be used with the neural net- 
works. Experimental results on TIMIT/NTIMIT corpora show 
that the performance of the proposed methods is comparable to 
that of recognizers retrained on telephone speech. 

1. INTRODUCTION 

With recent advances in speech recognition technology, contin- 
uous density hidden Markov model (HMM) based speech recog- 
nizers have achieved a high level of performance in controlled en- 
vironments, such as matched training and testing environments. 
However, the recognition performan ce is typically degraded if the 
training and testing environments are not matched. One such 
mismatch is telephone speech recognition using full bandwidth 
speech recognizers. To achieve good recognition accuracy, speech 
recognizers are usually retrained using telephone speech data. 
However, retraining a speech recognizer for telephone speech is 
an expensive task in terms of training data collection and com- 
putation time. In addition, as the recognizer is trained on lim- 
ited bandwidth speech data, performan ce is severely degraded 

compared to high quality speech recognition. Full bandwidth 
speech recognition usually achieves 90% - 94% word recognition 
accuracy [14], while telephone speech recognition exhibits only 
40% - 65% [ll]. 

In an effort to improve recognition perfo- ce, neural net- 

works have been used in conjunction with speech recognizers in 
various ways for robust speech recognition. In [20], neural net- 
works were applied to reduce noise from noisy speech signals. In 
[l], a neural network and am&c Lime Ewing (DTW) algo- 
rithm were used for speaker dependent word recognition in cars. 
In [18], two neural networks were used in tandem for both noise 
reduction and isolated word recognition under F-16 jet noise. In 
[6], a set of neural networks were used to establish a nonlinear 
mapping function to transform speech data between two speak- 
ers to improve speaker independent recognition performan ce. In 
[2], [3], and [15], neural networks were used as a front end of 
HMM based speech recognizers for feature extraction. In an- 
other approach, model adaptation methods for continuous den- 
sity HMM have been used to best match testing environments by 

transforming the parameters of speech recognizers (e.g., param- 
eters of Gaussian probability density functions). In Fximum 
9 poster&i (MAP) based adaptation, existing model param- 

eters are smoothed by new observations and used for speaker 
adaptation [5]. In parallel model combination (PMC), a clean - 
speech model and a noise model are combined to produce a new 
noisy speech model for noisy speech recognition [4]. In gximum 
likelihood linear regression (MLLR), the mean vectors of speaker 
independent speech recognizers are transformed by ffie trans- 
formation to best match speaker specific test utterances [9]. In 
stochastic matching [17], both feature transformation and model 
transformation are performed using expectation maximization 
(EM) algorithm. Both [9] and [17] assumed that the relation 
between training and testing environments is linear. 

In this paper, neural network based adaptation methods for 
robust distant-talking speech recognition [26, 24, 231, which do 
not require retraining of recognizers, is applied to telephone 
speech recognition. The feature vector compensation or the 
model parameter adjustment is automatically learned by the neu- 
ral networks. Since multi-layer gerceptrons (MLP) are known 

to be able to compute nonlinear mapping functions [lo], it can 
handle the nonlinear distortions found in telephone speech. Sec- 
ondly, a novel approach for unsupervised model adaptation is 
proposed. This method does not require transcriptions of adap- 
tation data, by constructing a universal sentence model (USM). 
It can be used for online adaptation in conjunction with the neu- 
ral network based adaptation methods. In Section 2, the neural 
network based adaptation methods are explained. In Section 3, 
the new unsupervised model adaptation method is proposed. Ex- 
perimental results are discussed in Section 4. 

2. ADAPTATION USING NEURAL NETWORKS 

Two types of neural networks that are used for adaptation in 
robust speech recognition are reviewed in this section; one using 
a mean gquared error (MSE) criterion, and the other using a 
conditional probability as its objective function. 

2.1. Feature Transformation Using Neural Network with Mean 
Squared Error Criterion 

Speech recognizers arc trained on wide band speech data. When 
the testing environment changes, a neural network is trained 
using a small amount of simultaneously collected speech data 
(so-called stereo data) for the new testing environment. In the 
case of telephone speech recognition, limited bandwidth speech 
is provided to the neural network as its input patterns, and the 
corresponding full bandwidth speech is provided as the target 
patterns. During the recognition of telephone speech, the neu- 
ral network transforms input telephone speech feature vectors 
into those that correspond to high quality speech, and passes 
them to speech recognizers. An MLP is used to establish the 
nonlinear mapping function of speech feature vectors between 



the testing and the training environments. Since the low quality 
speech feature vectors sre transformed to high quality ones, it 
can outperform the retrained recognizer that is trained on low 
quality speech. Therefore, the performan ce upper bound of this 
approach is not constrained to that of the retrained recognizer 

[241. 

2.2. Maximum Likelihood Neural Network 

Neural networks are usually trained to minimize the accumulated 
MSE [16], E, which is the sum of the squared difference between 
network output and corresponding target: 

where 0 is observation vectors, N is the number of output nodes 
(i.e., the dimension of a speech feature vector), oi is the net- 
work output of the ith node for an input vector o (i.e., distorted 

speech), =d to,, is the corresponding target value (i.e., clean 
speech). On the other hand, continuous speech recognition is 
accomplished by finding the word sequence that gives the high- 
est Viterbi path likelihood [25]. The acoustic likelihood that is 
affected by feature transfo-tion is usually computed using a 
mixture of Gaussian distributions: 

where Q is the corresponding state in the Viterbi path, M is the 
number of Gaussian distributions in the state Q, cm is the weight 
of mth distribution, and ps,,,, and Es,, are the mth distribution 
mean vector and covariances matrix of the state Q, respectively. 
The feature transfo-tion aims to maximize the probability 
in equation (2). However, minimizing the MSE of neural net- 
works, does not necessarily mean maximizing the acoustic score 
of equation (2). The anomaly arises from the different criteria, 
equation (1) and equation (2), in the synergistic use of neural net- 
works and HMM’s for robust speech recognition. The maximum 
likelihood neural Betwork (MLNN) [23] solves this problem of 
the tandem system by maximizing the likelihood instead of min- 
imizing the MSE. It is known that equation (1) maximizes the 
likelihood of the correct neural network itselfif the target value is 
distortedby Gaussiannoise [13]. However, we do not impose such 
an assumption, and directly maximize the conditional probabil- 
ity of each state, i.e., equation (2). The error back propagation 

(EBP) algorithm [16] can still be used with this new objective 
function. The weight updating rule can be derived by differen- 
tiating the logarithm of equation (2) with respect to weight WiJ 
(connection between output node i and hidden node j): 

~~P(olq) = ahP(Olq) 0% 

BWij ElOi %lJiJ ’ 
(3) 

where the second term is same as in the original EBP algorithm. 
The first term is the error at the output layer, and can be rewrit- 
ten as follows for a diagonal covariances matrix case: 

~l4olq) _ 1 
a% c P(4d Mom 

c,P(olq,) yy - Oi , (4) 

q.m,i 

where P(olqm) is the likelihood of the observation vector o being 
in the mth distribution of state q, and ps,m,i and 0: m i are the 

ith dimension mean and covariance of the mth distribution in 
state q, respectively. The error at the output layer is propor- 
tional to the weighted sum of the Mahalanobis distance between 
the mean and the network output. The MLNN is a neural net- 
work which takes a distribution instead of a vector, as its target. 
It should be noted that the MLNN can take any differentiable 
probability density function, and is not restricted to Gaussian 
distribution as its target. One advantage of the MLNN is that 
it does not require stereo data because the target distributions 

can be obtained using the Viterbi alignment. A similar approach 
has been used in the context of a maximum likelihood stochastic 
matching algorithm [19]. 

The MLNN can be used for model transformation as well as 
feature transfo-tion when it is used for robust speech recog- 
nition. In model transfo-tion MLNN, clean speech model pa- 
rameters are transformed to distorted speech model parameters 
to approximate the matched training and testing condition. The 
new objective function, P(olq), can also be used for the model 
transfo-tion. In mean transfo-tion, for example, the obser- 
vation o is fixed, and the mean pq,m is a variable, i.e., network 
output. Now, the logarithm of equation (2) is differentiated with 
respect to the network weight wil: 

The first term of equation (5) can be rewritten as follows for the 
diagonal covariances matrix case: 

asp = 1 
G q,m,i -c P(44 Mom 

c,P(olq,)oi ;2pq’m’i (6) 

q,m,i 

The weighted difference is propagated from the output layer us- 
ing the EBP algorithm to best match the mean, P~,.~,,, to its 
corresponding observation, oi . A variance transfo-tion MLNN 
can also be derived in a similar way, where the variable would be 

&,i. Unlike feature transfo-tion MLNN, the performance 

upper bound of model transfo-tion MLNN is constrained to 
that of retrained recognizers. In general, the mean transfo- 
tion network can be used where the inverse function may not be 
physically realizable or where the network can not be well-trained 
with a limited amount of data. 

3. UNSUPERVISED ADAPTATION 

In most model adaptation methods such as MAP and MLLR, 
the transcription of adaptation data is required for training. In 
order for these methods to be operated in unsupervised mode, 
the hypothesis from recognition results is usually used as a ref- 
erence transcription [22]. Instead of using a single hypothesis of 
the recognized output, multiple n-best candidates can be used as 
the transcriptions [12]. To represent larger number of alternative 
hypotheses more accurately, word lattices can be used instead 
of a fixed number of hypotheses, in a similar way as [21]. In this 
study, we propose to construct a Gversal sentence model (USM) 
using word HMM’s of speech recognizers, and use bigtams as the 
transition probabilities between words’. This single HMM can 
model any utterance (as long as there are no out-of-vocabulary 
words), and can be used for training without transcription. Since 
the USM can represent any utterances, it can be considered as 
a complete word lattice together with language model probabili- 
ties. The advantage of this unsupervised adaptation approach is 
that it can be used together with any other adaptation method 
discussed so far. Also, any model adaptation algorithm can make 
use of the USM. The unsupervised adaptation can be used adap- 
tively before recognizing speech in a new environment especially 
when the environment changes constantly, or incrementally dur- 
ing recognition. 

4. EXPERIMENTAL RESULTS 

A speech feature vector is composed of 12 dimensional mel- 
frequency gepstral coefficients (MFCC) , normalized energy, and 
their first and second order time derivatives, resulting in a 39 
dimensional vector for 25ms H amming windowed signals in ev- 
ery 1Oms. The baseline speech recognizer is trained using 3,696 
utterances from TIMIT training data. It uses 39 phones and 2 
silence models. Each phone is modeled using 3-state left-to-right 

‘In the experiment that follows, we did not use bigrams be- 
cause it was phone recognition experiment. 



monophone HMM with 30 Gaussian distributions per state. In 
total, the system has 3,630 Gaussian distributions. 1,344 utter- 
ances from NTIMIT’ test data are used for testing. When the 
system is trained and tested under the same environment (i.e., 
both using TIMIT corpus), the phone recognition accuracy is 
62.2% (“TIMIT” in Table 1). When the system is trained using 
TIMIT and tested using NTIMIT, the accuracy drops to 22.6% 
( “NTIMIT” in Table 1). The baseline system is retrained using 
single pass retraining algorithm [22] to see the performance of 
the recognizer trainedin the testing environment (i.e., both train- 
ing and testing use NTIMIT corpus). The performan ce of the 

retrained recognizer is 45.4% (“Retrained” in Table 1). However, 
the retraining requires a large amount of training data (3,696 ut- 
terances from NTIMIT training data in this case). For the rest 
of this paper, the recognizer trained using TIMIT corpus is used 
for testing, unless stated otherwise. 

TIMIT 

NTIMIT 
Retrained 

MSE 
MLNNl 

sub de1 ins act 

23.9 9.7 4.1 62.2 

56.1 11.1 10.2 22.6 

37.2 11.0 6.4 45.4 

43.4 11.9 7.1 37.6 

49.6 18.3 7.5 24.6 

MLNNls 48.9 12.0 10.9 28.2 

MLNN2 52.6 19.9 4.7 22.8 

MLNN2s 48.6 20.3 3.4 27.6 

USM 53.3 10.7 9.8 26.2 

MLLRl 45.9 16.7 5.5 1 31.9 

MLLR2 
J 

45.0 15.6 6.4 33.0 

MAP 43.7 13.8 5.8 36.6 

ML 44.2 11.2 8.3 36.2 

Table 1: Phone recognition accuracy in %. ‘Lsub”, L‘delrr “ins”, 
and “act” represent substitution error, deletion error, inseriion er- 
ror, and phone recognition accuracy, respectively. “TIMIT” is for 
matched training and testing using TIMIT corpus. “NTIMIT” is for 
mismatched training using TIMIT and testing using NTIMIT. “Re- 
trained” is matched training and testing using NTIMIT. The rest 
are all mismatched conditions (i.e., trained on TIMIT and tested on 
NTIMIT) with the following adaptation methods. “MSE” is for us- 
ing the neural network based adaptation method with mean squared 
error as its objective function. “MLNNl” is the feature transfor- 
mation maximum likelihood neural network. “MLNNls” makes use 
of stereo data in state/frame alignment in addition to “MLNNl”. 
“MLNN2” is the mean transformation maximum likelihood neural 
network. “MLNN2s” makes use of stereo data as in “MLNNls”. 
“USM” is unsupervised model transformation using universal sen- 
tence model. “MLLRl” is the maximum likelihood linear regression 
using a single transformation matrix. “MLLR2” is the maximum 
likelihood linear regression using multiple transformation matrices 
based on linguistic information. “MAP” is the model transformation 
using maximum a posterroti estimation. “ML” is additional train- 
ing using &rum-Welch algorithm. The rest are the combination of 
two or more methods in tandem. 

The feature transfo-tion neural network with MSE as its 
objective function performs the best (37.6%) in all the adap- 
tation methods mentioned in the previous section (“MS,” in 
Table 1). The feature transfo-tion MLNN (24.6%) and the 
model transformation MLNN (22.8%) improve the performance 

* NTIMIT is another version of TIMIT recorded via telephone 
line [7]. 

only marginally (“MLNNl” and “MLNNZ” in Table 1, respec- 
tively). Particularly, the model transfo-tion MLNN performs 
poorly compared to feature transformation MLNN. This is prob- 
ably because only a small number of hidden nodes are used in 
the model transfo-tion network while the feature transfo- 
tion MLNN uses a fairly large number of hidden nodes3, and 
only the mean vectors are transformed. When stereo data is 
available, full bandwidth data can be used in state/frame align- 
ment for both the feature transformation MLNN and the model 
transfo-tion MLNN as in the single pass retraining algorithm. 
This more accurate state/frame alignment info-tion improves 
the recognition performan ce to 28.2% and 27.6% in both cases 
(“MLNNls” and “MLNN2s” in Table 1, respectively). The unsu- 
pervised model adaptation using USM improves the performance 
(26.2%) compared to no adaptation (22.6%). 

Some of the traditional model transformation methods 
discussed in Section 1 have been compared. The MLLR 
that uses a single global transfo-tion4 does not perform 
(31.9%, “MLLRl” in Table 1) as well as the one using mul- 
tiple transfo-tions5 based on linguistic info-tion (33.00/o, 
“MLLR2” in Table 1). In multiple transfo-tions MLLR, the 
nonlinearity is approximated as a piece wise linear transforma- 
tion. However, it does not perform better than feature trans- 
fo-tion neural network with MSE (37.6%). The MLLR can 
be compared to the model transfo-tion MLNN in a sense 
that both methods transform model parameters in order to best 
match observed signals. The difference is that MLNN uses non- 
linear transformation while MLLR uses (piece wise) linear trans- 
formation. In this experiment, it seems that the hidden layer of 
the MLNN (i.e., VC-dimension [S]) is not complex enough for the 
amount of adaptation data. The MAP performs better (36.6%) 
than MLLR (33.0%). This is because MAP uses a larger number 
of transfo-tions than MLLR, and there is enough adaptation 
data for those transfo-tions. Additional training using the 
adaptation data performs (36.2%, “ML” in Table 1) almost same 
as the MAP. 

The neural network approach can be used in combi- 
nation with the other adaptation methods described above. 
The feature transfo-tion neural network with MSE can 
be combined with the feature trensfo-tion MLNN (30.2%, 
“MSE+MLNNls” in Table l), with model transfo-tion 
MLNN (30.40/o, “MSE+MLNN2s” in Table l), or with MLLR 
(37.0% for “MSE+MLLRl” and 35.8% for “MSE+MLLR2” in 
Table 1). All these combination degrade original “MSE” per- 
fo-ce. On the other hand, when it is combined with the 
USM (38.0010, “MSE+USM” in Table 1) or the MAP (39.9%, 
“MSE+MAP” in Table l), the perfo -ce is further improved. 
The best improvement is achieved by combining the neural net- 
work with additional training (45.00/o, “MSE+ML” in Table 1). 
It seems that more fine grain nonlinearity can be captured accu- 
rately by ML especially after the feature is transformed by the 
network. This result is quite comparable to the retrained sys- 
tem (45.4%) which used to be thought of as the upper bound 
of telephone speech recognition. It should be noted that these 
adaptation methods use much less training data (462 utterances 
from training data) than retrained system. 

5. CONCLUSIONS 

We have described a neural network based transfo-tion ap- 
proach combined with model trensfo-tion methods for robust 
telephone speech recognition. Experimental results on both the 
feature transformation and the mean transformstion network 
show 22.1% - 66.4% relative improvement. When the neural 
network is combined with additional ML training or unsuper- 
vised adaptation, the performance improves further, resulting in 

3The model transfo-tion network uses 39 hidden nodes, 
and the feature transformation network uses 1000 hidden nodes. 

“The silence models use seperate transformation. 

‘There are 36 transformations used in this experiment. 



a system which is comparable to the retrained recognizer, but 
with much less training data. 

The advantages of this approach are as follows. First, it does 
not require retraining of the speech recognizer, so the expensive 
task in terms of training data collection and computational time 
is avoided. Second, it does not require any knowledge about the 
distortion, yet it automatically learns the mapping function be- 
tween training and testing environments. Third, since the MLP 
is known to be able to compute nonlinear functions, the neural 
network based approach is able to handle nonlinear distortions 
found in telephone speech. Finally, the feature transfo-tion 
neural network using stereo data can learn the inverse distortion 
function, so its performan ce upper bound is that of a clew speech 
recognizer with matched training and testing environments. The 
mean transformation MLNN does not require stereo data. So, 
it can be used where the inverse function may not be physically 
realizable or where the network can not be well-trained with a 
limited amount of information. 

The training algorithm for USM is still open for discus- 
sion. Since the competing hypotheses (confusable pairs) can 
also be represented in a single HMM, discriminative train- 
ing methods that use mutual information criterion instead 
of mazimum likelihood may be a good candidate. Currently, 
only reasonable amount of training data (less than 100 hours 
of speech) is used to train speech recognizers because the tran- 
scriptions have to be made manually. However, using the un- 
supervised training, it may be possible to make use of the huge 
amount of untranscribed speech data from TV and radio broad- 
casting without involving human efforts. 
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