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Indexing terms: Maximum driving, Systolic 

array 

ABSTRACT 

In this work, we develop an optimized 

binary tree-level rule for the design of systolic 

array structure of Delay LMS (DLMS) adaptive 

filter Using our developed method higher 

convergence rate can be obtained without 

sacriJictng the properties of systolic array 

structure. Also, based on our optimized tree rule, 

user can easily design any even-number tap 

adaptive system with minimum delay and high 

regularity under the constraints of maximum 

drtvtng and the total number of taps, 

effkient implementation of an adaptive filter. It 

is our motivation to design a rule suitable for 

chip realization. This paper presents a modified 

systolic implementation of the DLMS algorithm 

in which we propose a rule for designer to 

decide the delay stage (i.e., tree level) and to 

insert delay element to construct the systolic 

array suitable for VLSI design. Finally, we 

verify our systolic array structure via two 

examples; that is, one is the system identification 

[7] and the other is adaptive equalizer [2] by 

computer simulation. 

2. MODIFIED SYSTOLIC ARRAY 

STRUCTURE 

1. INTRODUCTION 

Adaptive filters have a wide range of 

applications, such as system identification [ 11, 

adaptive equalizer [2], echo cancellation [3], and 

noise cancellation. However, they either require 

longer delay via entire taps in systolic array [ 1, 41 

or shorter delay without considerations of 

systolic array [5]. One of the most common 

algorithms for adaptive filtering is least mean 

square (LMS) algorithm deserved much attention 

due to its superior performance. However, owing 

to the need of capability of driving and the 

nature of local connection in hardware, it is 

diffkult to directly implement the LMS 

algorithm in VLSI chip implementation without 

considering delay. A great deal amounts of 

researches [ 1, 41 have been conducted on the 

An N th tap adaptive filter using DLMS 

algorithm may be represented by the following 

equations: 

y(n) = w’ (n)X(n) (1) 

44 = 44 - y(n) (2) 

W(n + 1) = W(n) + ,n x e(n - D) x X(n - D) (3) 

where d(n) and y(n) denote the desired signal, 

and output signal, respectively. D is the delay in 

weight adaptation, p is the step-size used for 

adaptation of the weight vector, and e(n) is the 

error. In the above equations, the weight vector 

W(n) and the input vector X(n) are defined as 

follows: 

W(n) = Loo (n), 0, (n>, . * *, UN-, (@I9 > and 

X(n) = [x(n), x(n - l), **., x(n -N + l)]’ 

where T denotes the transpose of a matrix. 

For the case, when D = 0, the DLMS 
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algorithm reduces to the LMS algorithm. DLMS 

algorithm has been first proposed in 1984 by 

Proakis [5]. In that paper, the tree method also 

has been provided; however, the error terms are 

still required to globally adjust all of the weights. 

Global propagation is the main drawback and 

driving all of the weights is also a problem in 

VLSI design. Recently, several researches [ 1, 41 

about the systolic implementation of DLMS have 

been studied, but they still require N-taps delay. 

Herein, we propose an optimized binary tree- 

level rule, and insert the delay element to solve 

these problems. At first, we can modify the 

structure [4] to derive a new systolic array 

without suffering from the global propagation 

and driving all of the taps except the single 

feedback loop. On the other hand, the new 

systolic structure enhances the convergence rate 

better than that of the conventional systolic array 

structures [ 1, 41. Then, a new processing element 

(PE,), for example, is depicted in Fig. 1, where 

the subscript of 2 is the number of tree level, that 

is, this kind of PE allows us to adjust 4 taps per 

clock. We pad 3 delay elements, painted with 

cross section, to 3 input terms (i.e., 

pxe(n- D), x(n) and x(n- 0)). 

Fig. 1. The inserting delay element painted with 

cross-section for the inputs: kl x e(n - 0) , 

x(n) and x(n - D) in PE, 

The generalized structure of overall 

adaptive filter is depicted in Fig. 2. Obviously, 

we observe that the global propagation and 

driving problems can be solved. Thus, we take 

the merit of the tree structure, (i.e., the speed-up 

of feedback) and the advantage of systolic array 

(i.e., suitable for VLSI design). Next, we will 

encounter another problem about choosing the 

tree-level to achieve minimum delay in the 

constraints of given total number of taps and 

maximum driving per each clock. The 

terminology of maximum driving can be defined 

as follows: one can adjust the maximum number 

of coefficients of system per each clock in 

physical design. Also, we know that the less 

delay of the system has, the better performance it * 

will be [5]. 

Fig. 2. The overall systolic structure with 

cascaded PEs where PE,.,, has 2""', taps. 

According to the structure in Fig. 2, we 

induce the following rule: 

&.&. 

S, = Nmod2P 

f or 

k=(p-l):-1:l 

S, = Sk+, mod 2k 

end 

where S, p and N are residues, the number of 

tree levels and taps, respectively. The notation of 

ISI is the integer value less than or equal to S. 

Therefore, the rule can give an optimized 



minimum delay under varying different p,,, 

and in the constraint of fixed N. For example, 

when N = 62, and the maximum driving is 32 

taps per each clock, we can find that the tree 

level could be equal to 4 or 5 as shown in Fig. 3. 

The Total Number of Taps=62 

t 

15 2 25 3 35 4 45 5 

Number Of Tree Level 

Fig. 3. The optimized tree rule between delay 

and regularity. 

With respect to the problem of selecting a 

good regularity, we observe that p,,, = 4 

tree-level needs fewer kinds of PE. It is an 

optimized value under considering delay and 

regularity. 

3. SIMULATION AND PERFORMANCE 

System identification is one of the most 

widely application in many control areas; 

therefore, we verify the systolic array structure 

and rule by computer simulation. In this example, 

the unknown system is lo-taps band-pass FIR 

filter, whose frequency response is defined as 

follows: 

H(e’“) = 

I 

,-/bV(N-I)/2 
3 0.3?r s IWI 50.7X (5) 

0, otherwise 

Transversal filter containing 16-taps and using 

step size equal to 0.025 is the identified structure 

performed with LMS, conventional DLMS, and 

modified DLMS, while the input sequence is 

Gaussian distribution, zero-mean random 

process. Using Rule and Eq. (4), for N = 16, we 

may choose p,,, = 2, 3 or 4, and obtain D = 8, 

7 or 7, respectively. Of course, selecting 

P max = 3 tree-level is an optimized choice for 

this structure from intuition with minimum delay 

and high regularity. The ensemble average with 

50 runs of (a) LMS, (b) modified DLMS using 

optimized tree, and (c) conventional DLMS is 

shown in Fig. 4. As a consequence, convergence 

rate is superior to that of conventional DLMS 

algorithm by simulation. 
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Fig. 4. Comparison results of (a) LMS, (b) 

modified DLMS using optimized tree, and (c) 

conventional DLMS 

In the second example, we study the use of 

the modified structure for adaptive equalization 

of a linear dispersive channel [2] that produces 

unknown distortion. The random sequence {x,,} 

applied to the channel input consists of a 

Bernoulli sequence, with x, = ? 1 and having 

zero mean and unit variance. The impulse 

response of the channel is described by the 

raised cosine: 

1 + cos($(n - 2)l n = 1,2,3 (6) 

0, otherwise 

where the parameter W controls the amount of 

amplitude distortion produced by the channel. 

Herein, we choose W and step size equal to 3. I 



and 0.03, respectively. The simulation results of 

ensemble average with 200 runs as shown in Fig. 

5 can be seen that the convergence rate of (b) 

tree-systolic DLMS, where p,, = 2 and 

D = 7, has similar convergence to that of (a) 

LMS algorithm. On the other hand, the 

conventional DLMS algorithm has larger 

variation and slower convergence. 

loo 

6 to-' 

,: 

% 
9 

:: 

5 
s ,ly 

,OJ 
0 100 200 300 400 

Lerat~on Number 

500 600 700 

Fig. 5. Comparison results of (a) LMS, (b) 

modified DLMS using optimized tree, and (c) 

conventional DLMS. 

4. CONCLUSIONS 

A new systolic array, selecting optimized 

binary tree structure and inserting the delay 

element every 2’ tap to construct the systolic 

array suitable for VLSI design, has been 

presented in this paper. We verify our systolic 

array structure via two examples of system 

identification and adaptive equalizer by 

computer simulation and observe that their 

performances are much better than that of the 

conventional systolic array structure [ 1, 41 using 

DLMS algorithm. Also, while the new structure 

takes the merit of tree structure and the 

advantage of systolic array, user can easily 

design any even-number tap adaptive system 

under the constraint of maximum driving and the 

total number of taps. 
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