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ABSTRACT

In this paper, a high-speed parallel residue-to-binary
converter is proposed for the recently introduced moduli
set SF={2"-1, 2", 27, 1 ,22Am+1} for a general
value of k. The proposed converter replaces the
multiplications of the residue-to-binary conversion by
simple cyclic shift and concatenation operations. For the
purpose of comparison, the individual converters for the
cases of k=0 and 1 are derived from the general
architecture. The converter for S° is twice as fast as the
previous converter using only one-half of the hardware,

while that of S' is three times as fast, but requiring only
60% of the hardware.

1. INTRODUCTION

During the past decade, residue number system (RNS)
arithmetic has received considerable attention in
arithmetic computation and signal processing applications
due to the inherent properties of the RNS such as
parallelism, modularity, fault tolerance and carry-free
operations [6],[8],[9]. The crucial step for any successful
RNS application is the residue-to-binary (R/B)
conversion. In recent years, the conversion process has
been studied very extensively [1]-[5],[7],[10]-[13].

k

The moduli set S'={2"-1, 2°"+1, 2""+1,
L 2"l } for RNS applications was recently introduced
in [5]; the R/B converters for the cases of k=0 and 1 were
also proposed in the same article. These converters are
simple and fast, since the multiplications in the R/B
conversion have been replaced by simple shift operations
of signed-digit numbers. However, no R/B converter for
S* has been designed for k>2. Since more than two or
three moduli must be considered for large dynamic ranges
[2], an introduction of the converter for a general & is very
essential.

In this paper, we propose a high-speed parallel R/B
converter for the general moduli set S*; this converter also
uses no multipliers. Instead of shifting the signed-digit
numbers, we use simple cyclic shift and concatenation
operations. For the purpose of comparison, two individual
converters for S° and S' are derived from the general
architecture. The new converter for S° is twice as fast as
the one in [5] requiring only one-half of the hardware,
while that for S' is three times as fast as the

corresponding one in [5], but requiring only 60% of the
hardware.

2. BACKGROUND MATERIAL

A residue number system is defined in terms of a set of
relatively prime moduli set (P,P,,L ,P,), that is, (P,P)=1

for i#j. A binary number X can be represented as
X=(x,x,,L ,x,), where x,=XmodP, and 0<x,<P. Such a
representation is unique for any integer X € [0,M-1],
where M=PPL P, is the dynamic range of (£,P,L ,F).
To convert (x ,x,,L,x,) into the binary number X,
the Chinese Remainder Theorem (CRT) is generally
used. We define XmodP, by X, and |E.’1|P to be the
multiplicative inverse of £, modP, if |E.’1|P *P=lmodP,.
Chinese Remainder Theorem The binary number X is
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computed by X= , where N = and
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|N[1|P is the multiplicative inverse of N, mod P,.

Assuming m and k to be integers, we define the

moduli set S° as S'={2"-1, 27741, 27741,

L 2""4+1}= (P,.P,P.L,P)and M=P P1 P=2""-1. A
binary number X in the dynamic range [0,M-1] is
represented as (x ,x,,x L ,x,), where x is an m-bit
binary number and x and x. are (m2'+1)-bit binary

numbers for i=0,1,L ,k. The values of x , x, and X are

given by,
Xy ety Xty b X X o =X =X mod(2”—1) (1a)
XX gy L X%, =X, =X mod(22’m +1) (1b)
XiomXizma L Xuxio == (=X)mod(2> ™" -1) (1c)

For the moduli set S°, the binary number X=
(x_;,x9.x,L ,x,) can be computed by the following
proposition of [5], which has been derived from the CRT.
Proposition 1 [5] For i =0,1,L ,k,
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The R/B converters based on Proposition 1 for the
moduli sets S° and S' have been proposed in [5] using
signed-digit numbers without multipliers. The following
example illustrates this method.

Example 1 Given m=2, k=1, §'={3,517} and
M =255, we find the binary number X=(2,1,11) by X=
273 + 25 +x)+ 2 (= xg) = 22 x + 27 (x + xp) + (X — xp)

M

251

The computation of X is now carried out in three steps
as suggested in [5]. In Step 1, the multiplications are
performed by shifting X_,, X, and X, into eight sections,

while the additions and subtractions are performed by
redundant adders/subtractors to output one signed-digit
number for each section.
Section 1: 1+0+0-1=0
Section 3: 1+0+1-0=2
Section 5: 0-1-1+0=-2 Section 6: 1-0-0=1
Section 7: 04+1-0-1=0 Section 8: 1+140-0=2
In Step 2, the eight signed-digit outputs are converted
into binary numbers by redundant adders/subtracters.
0+2L %1422 %24 0+2%*(=2)+2°*14+0+27 *2=100001010
Thus, the sum is 00001010 and the carry-out bit is 1.
In Step 3, X is generated by adding 1 to the sum.
Thus X= 00001010+1=1011.

Section 2: 0+1-0=1
Section 4: 0-1+1+0=0

In order to develop the R/B converter for the general
moduli set S*, we need the following definitions.
Definition 1 We define the variables 7,, T,,, and7,,

for i=0,1,L. ,k by
]11 — |(220m + 1)(22’m + I)L (22A m + 1)(21117(k+1))x71|M (33)
T2i+2 — |(22’ m )(22'Hm + I)L (22A m + 1)(22”)1*(1{*1‘4»1) )xi |M (3b)
T,,.\= |(_1)(22'+1m + 1)L (22Am n 1)(22’111—(k—i+1) )x; |M 30)

It is easy to see that T/=

s
M
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fori=0,1,1 ,k. Since M=2"""_-1, all the T,’s are
(m2*1)-bit binary numbers. In Section 3, we will show
that each of the 7;’s can be generated by concatenation
and cyclic shift operations, which are defined below.

Definition 2 Assume n and n, to be integers such that

n2n,. For any n-bit binary number

x=x,,Lx,,x,, ;L %, the modulo multiplication

|x*2”“ is accomplished by moving the highest

2"—1
significant n, bits to the lowest significant position, i.e.,

|x*2%

= Xy 1l XX, Lo X, , . We call this operation

21 i

“cyclic shift”.

Definition 3 We define the operation of “concatenation”
of two numbers x; and x, to be <x; ><x, >=x2" +x,,
where x, is an m, -bit number and x, an m,-bit number.

Definition 4 For any integer >0, we denote

[0]"=50z% £%> and [1]°=<1lg% g£k>. Assuming that

mn, (n2n,) and k, are integers, and X is an n,-bit
binary number, we denote

[0 <x> for n>n,
[x]=
x forn=n,
and  [xj= 1] _<x> forn>n,
x forn=mn,

Therefore, from Definitions 3 and 4, we get
k,
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3. R/B CONVERTER FOR S§*

An R/B converter for the moduli set S* computes

X
T+ Z (T2 + Ti3)

i=0

. The parallel R/B converter to

M

be proposed later in this section is based on the
following theorem, which presents a method of generating
T, T,,, and T, , by the concatenation and cyclic shift

X=

operations on x ,,x, and x, respectively.
Theorem 1

K+l

_ 21
T=<x,;L x 9> [x71] <X oD Xog g™

By =<xp; L X0> [xi]ZAxl [o]"* "< x
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where [x 1= x,, [x;]= [0]"’2"1 <x; >,

i

m= [1]1112’71 < Z >,

The proof is omitted for lack of space.

Example 2 We apply Theorem 1 to Example 1. Then
7= 1010f10110,, T,=01]00010j0, T3=1110[1110,
T,=1000[0101, T,=10100[111
X =|I, +T, +T, +T, +Ts|,,=1011

It is easy to see that the above calculations based on
Theorem 1 are very much simpler than those in Example
1. Theorem 1 also enables us to implement a parallel R/B
converter for the general moduli set S* without using
multipliers.
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Figure 1. (a) Proposed R/B converter (b) CSA tree

The proposed parallel R/B converter for S* is shown
in Fig. 1 (a). It has three parts: an inverter level, a CSA
tree and a carry look-ahead adder (CLA) with an end-
around carry (EAC). The inverter level generates x, from
x; for i=0,1,L. ,k. The CSA tree consists of 2k+1

CSAs with EAC in {log3 /2(?)—‘ levels [7] as shown

in Fig. 1 (b); each CSA with EAC is an (m2"*')-bit
adder. This tree reduces the modulo addition of the
(2k+3) T;’s to asum and a carry. Then the CLA with
EAC adds the sum and carry together to generate the
binary number X .

k
The inverter level has Z(mz" +D)= m* )+ (k+1)

i=0
inverters. Each of the CSAs consists of m2**' full adders
or half adders (FAs/HAs). The CLA with EAC used is
the one proposed in [3] and approximately has the
complexity of m2f"' FAs. Thus, the converter has
(2k+2ym2*" FAs/fHAs and m(2""' — 1)+ (k+ 1) inverters.
The delay of the inverter level is that of one inverter,

tiy- The CSA tree has [log3/2(2k2+3)—‘ levels, each of

which has a delay of an FA, 7,,. The delay of the CLA
with EAC is approximately m2*"'z;, [3]. Thus, the total

2k +3)"+ m2k+1) foq-

delay of the converter is 7,y +( [10553 1

4. TWO SPECIAL CASES

41 The R/B Converter for S°

By Theorem 1, a binary number X based on the
moduli set $° ={2" —1,2%"" +1} is computed as follows.

X=|T, +T, + T3|2m71

I= X 0X 1 m-ny L X1 X 0X gyl Xog g

m—1

T=<x00 >[0]"" <xg, L xg; >

T3 =< ;o,m ;o,m—1 L ;o‘o > [1]’”71

For the moduli set $°, we obtain the converter from
the general architecture of Fig. 1. This converter consists
of a 2m-bit CSA with EAC and a 2m-bit CLA with EAC.
This is shown in Fig. 2 (a). Fig. 2 (b) shows the block
diagram of the corresponding converter developed in [5]
and is included here for the sake of comparison. It is easy
to see that the proposed converter saves one 2m-bit carry
propagation adder (CPA).

X X X0 X

| A P I

Xy )
11 |

| 2m-bit CSA with EAC |

2m-bit CSA
I I 2m-bit CPA

| 2m-bit CLA with EAC (2m-bit CPA) |
x 2m-bit CPA

X

(a) (b)
Figure 2. (a) Proposed converter (b) The converter in [5]

The 2m-bit CLA needs 2m FAs [3], while the 2m-bit
CSA with EAC needs 2m adders. Since 7, has (m—1)
bits of “0” and 7 has (m —1) bits of “1”, (2m—2) of the
FAs are reduced to half adders [11]. Hence, the CSA has
2 FAs and (2m—2) HAs. As in [5], the inverter level is
not considered in the performance evaluation, since its
contribution is negligible. Using Table 1 of [5], the
number of transistors used is calculated to be

2420+ (2m—2)*10+2m *20 = 60m + 20

The delay calculation is carried out in a similar
manner. The performance of the proposed converter and
the one in [5] is compared in Table 1.

Table 1 Comparison of the converters for S°

A = Delay of an HA

Transistors Delay

Proposed Converter 60m-+20

(@m+2) A

Converter in [5] 120m+30 [5] (9m+2) A I5]

Thus, the proposed converter is twice as fast as the
converter in [5] using only one-half of the hardware.



4.2 The R/B Converter for S'

Using Theorem 1, a binary number X based on the
moduli set $' ={2" —1,2%” +1,2?” +1} is computed by

X=|1 +T, + T, + T, + Ty ...

7= 3
1=<X_1 X490 > [x71] <X e b X 3% 15 >

m—1

m—1
< xo’m ..xo’z >

Ty=<xg;x00 >[0]" <xq,,--X90 >[0]

T,= < 1Xom T Xoo >[1]"" < Xom T Xoo >[1]"7

2m—1

ILi=<x,>[0] <Xpom b XXy >

2m-1

Ty= < Xi2n L X1x10 >[1]

For the moduli set S', we obtain the converter from
the general architecture of Fig. 1. This converter consists
of three 4m-bit CSAs with EAC and a 4m-bit CLA with
EAC. This is shown in Fig. 3 (a). Fig. 3 (b) shows the
block diagram of the corresponding converter developed in
[5] and is included here for the sake of comparison. It is
easy to see that the proposed converter saves one 8m-bit
CPA while using one more 4m-bit CSA.

X4 x
I
4m-bit CSA with EAC

o Xo
T, %

T, I ! A1 L oox ;1
T
x1 [dm-bit CSA with EAC T } -
8m-bit CSA
T | I
]
4m-bit CSA with EAC 8m-bit CPA
I i
4m-bit CLA with EAC (4m-bit CPA) 4m-bit CPA
I x | x
(a) (b)

Figure 3. (a) Proposed converter (b) The converter in [5]

The performance of the proposed converter and that of
the corresponding one given in [5] is compared in Table
2.

Table 2 Comparison of the converters for S'

Transistors Delay
Proposed Converter 240m+60 (8m+6) A
Converter in [5] 400m-+20 (28m+5) AJ5]

Thus, the proposed converter is three times as fast, but
requiring only 60% of the hardware.

3. CONCLUSION

A high-speed parallel R/B converter for the general
moduli set S* has been proposed. The new converter uses
no multipliers. The individual converters for the moduli
sets $° and S' have been derived from the general
architecture. The proposed R/B converter for S° is twice
as fast as the existing one in [5] using only one-half of the

hardware, while that for S' is three times faster, but
requiring only 60% of the hardware.
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