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ABSTRACT 

In this paper, a new Iaguerre domain adaptive filter algorithm, 
which will be refered to as the Laguerre domain adaptive filter 
II (LDAF It) has been proposed. The performance of the 
adaptive filtering algorithms simulated for acoustic echo 
cancellation application. The performances of the algorithm are 
specified using various quantities. All the results of the work, 
for different performance quantities, are presented with several 
graphics and they are compared with Legendre functions based 
adaptive filter (LFE3 ADF) [l], and LMS adaptive filter (LMS 
ADF). 

1. INTRODUCTION 

The concept of adaptive filtering constitutes an important part 
of statistical signal processing. Whenever there is a requirement 
to process signals that result from unknown statistics of an 
enviromnent, the use of an adaptive filter offers an attractive 
solution to the problem. Thus, in communications, adaptive 
filters are successfully applied in such diverse fields as echo 
cancellation channel equalization, linear prediction, and 
spectral estimation. 

In the time domain approach for finite impulse response (FIR), 
the filter taps are estimated by adaptive algorithms such as the 
least mean square (LMS) [2], the gradient lattice [3], the least 
squares lattice [4] or the recursive least squares (RLS) [2]. 

The time domain LMS adaptive filter algorithm has been used 
in a variety of applications because of its robustness and its 
well-understood behaviour. Convergence time and stability of 
the algonthm depend on the ratio between the largest and the 
smallest eigenvalues associated with the correlation matrix of 
the input sequence. Slow convergence rate can be expected 
when this ratio is large. In practical applications the input 
sequence is usually speech whose correlation matrix has highly 
disparate eigenvalues. 

Thus, transform domain adaptive t&ring was introduced to 
accelerate this rate and also reduce the complexity of the tapped 
delay line ADFs[S]. Several Frequency domain adaptive filters 
are proposed. Recently, a Laguerre domain adaptive filter is 
proposed by Mandyam where only the input is transformed to 

the Laguerre domain [6]. These Laguerre domain components 
are weighed and summed to produce the filter output. This 
output is then subtracted Tom the time-domain desired 
response. However in the proposed Laguerre domain adaptive 
filter II structure [7] in this paper, the desired response is also 
transformed into Laguerre domain. Then LMS algorithm 1s 
applied to each bin of the filter independently. This way 
reduces the error between the transformed values of the desired 
response and the received speech signal. The performance of 
this filter is simulated for acoustic echo cancellation 
application. Echo arises in hands-free telephony due to 
impedance mismatch in the hybrid (network echo) and due to 
acoustic feedback from the loudspeaker to the microphone 
(acoustic echo) [ 81. 

Organization of the paper is as follows: Section It introduces 
the background theory for the Discrete Laguerre transform and 
general transform domain adaptive filtering. Section RI 
describes the proposed LADF II. Simulation results and the 
concluding remarks are summarized in Section IV. 

2. BACKGROUND METERIAL 

2.1 Discrete Laguerre Transform 

Discrete unitary transforms are useful in signal processing 
applications, such as transform domain adaptive filtering in the 
areas of speech processing and adaptive line enhancers. A well- 
known method for generating these tmitary transforms from a 
set of orthonormal polynomials is Gauss-Jacobi procedure [6]. 
Using this procedure, Mandyam and Ahmed [6] derived discrete 
Laguerre transform (DLT) Tom the orthononnal set of Laguerre 
functions. 

The n-th order Laguerre functions (starting from 0) can be 
defined as [6] 

where 

l&x) = (-1)?2p) e‘PXL@px) (1) 

(2) 



d 
and p is nonzero constant (z IS the derivation operator). 

Following recursive representation of the n-th Laguerre function 
canbeobtainedfrom(l)and(2)forn~1[6] 

ln(x.p) 4 Lr(x,p)[2px-2n+l]-y (n-l)‘l,.r(x,p). (3) 

The DLT of a discrete N-point signal u[n] can be written as 
N-l 

Z[fJ = ~a&(xk,p)u~] f = 0,l .N-1 (4) 
k=O 

Here, {x,,} is the set of the discretization points derived from 
the roots of lN(x,p) and a coefficients are given by [6] 

-bn 1 
ak = ?;;;;; ~nbk)h(xk) 

(5) 

2.2 Transform Domain Adaptive filtering 

A block diagram of the transform domain adaptive filter is 
shown in Figure (1). The input vector x, is first transformed 
into another vector G. 

zn = [zn(O> ~(1) zn(M-l)lT (6) 

using an orthogonal transformation 

z. = wx. (7) 

where W is a unitary matrix of rank M. Now, the vector z,, is 
multiplied by the transform domain weight vector 

Cl. = [Qo(n) G(n) . %-t(n)] (8) 

to form the adaptive output. The output and the corresponding 
error signal are 

y(n) = znTQn (9) 

and 

e(n) = d(n) - y(n) (10) 

respectively. The weight update equation is 

%+I CO= CM) +2p@)z,(i) (11) 

where 

i = 0, 1, M-l (12) 

is the adaptive step size for the i-th transform component and 
the p is a positive constant that governs the rate of convergence. 
As it is shown in [S], new tap weights are equal to the optimum 
(Wiener) solution cu,multiplied by the transform matrix W. 

(13) 

where pxd is the cross-correlation vector between the tap input 
vector xa and the desired response d(n), and R, is the 
correlation matrix of the tap input vector xm. 
Therefore, for properly chosen orthogonal transform W, some 
reduction in the eigenvalue spread can be expected. As a 
consequence of this, the transform domain adaptive algorithm 
can be expected to have better convergence properties than the 
corresponding time domain adaptive algorithm. As an 
application, in the next section, proposed Laguerre domain 
adaptive filter II implementation is considered. 

3. Laguerre Domain Adaptive Filter II 

In the proposed adaptive filter structure, adaptation of the filter 
is done in the Laguerre domain. The difference between the 
proposed adaptive filter and the adaptive filter mentioned above 
[6] is that in the proposed adaptive filter, the desired value is 
also transformed to the Laguerre domain. The advantages of 
this step is to reduce the error between the transformed values 
of the desired response and the received speech signal. 

A block diagram of the Laguerre domain adaptive filter II is 
shown in Figure (2). The input vector and the desired vector 
are first transformed into Laguerre domain vectors z,, and rb, 

and 
z,, = [z,,(O) z,,(l). z,(M-l)lT (14) 

n, = hn(O> qn(l> . qdM-l>lT (15) 

using DLT, 

z. = Lx,, (16) 
qa=Ma (17) 

where L is the unitary Laguerre transform matrix and d. and x. 
are desired response and input vectors respectively. Now, the 
each z,,(i) is multiplied by the corresponding trausform domain 
weights as shown in vector form in Eq ( 18) 

Q. = [C&(n) S&(n) C&-r(n)]T (18) 

to form the adaptive outputs. The outputs and the error signals 
are 

and 

h(i) = Qn(i>z4i) 

e,(i) = n&-y,(i) 

respectively. The weight update equation is 

C&&i) = Q,(i) + 2h%(r)zn(i), i = 0,l 

where 

(19) 

(20) 

,M-1 (21) 



of its fast convergence at higher filter orders than presently 
implementable on DSPs. 

and 

4i-h) = (1-P) %-l(i) +PE[z,,c,{], i = O,l, . . ..M-1 (23) 

p(i) is the adaptive step size for the i-th transform component. 
From the last section, if the LMS algorithm is applied 
independently to i-th bin, different pi can be chosen for each 
bin Since in practical applications this is not useful, an 
estimate of p , by normalizing a constant convergence factor a 
by an estimate of the energy at the i-th transform component, is 
used instead. This normalization is similar to the process used 
in the lattice adaptive filter [2]. 

The filter structure implemented in this paper as an acoustic 
echo canceller is given in the Figure (3). The input of the both 
unknown echo source and the LDAF II is the same signal Tom 
the far end speaker.(x(n)) The output of the unknown system 
(the desired signal d(n)) and additive noise from the 
enviromnent are fed into the LDAF II. Then the output of the 
LDAF II is residual echo ,i.e. error e(n) in the above structure. 

IV. RESULTS AND CONCLUSION 

In this work, An acoustic echo canceller for detection of an 
echoed signal in a car environment is considered. Th echo 
cancellation is performeed as a test case due to evaluate the 
effectiveness of proposed algorithm. The echo path in a car 
environment was simulated using a finite impulse response 
filter. Real speech signal was used to test the echo canceller. 
Echo Return Loss Enhancement (ERLE) is used as the 
performance index of the algorithms. ERLE is defined as the 
ratio of the energy in the residual echo e(n) to the energy in the 
original echo d(n): 

(24) 

In this work the LDAF II, LMS, and Legendre and Laguerre 
function based adaptive tiltering algorithms are implemented 
and compared based on their convergence rate, steady state 
ERLE, and complexity. All the filters have 256 taps. LMS, 
while simple to implement, has poor convergence rate when the 
eigenvalue spread of the signal is high. As it can be seen in 
Figure (4) the proposed structure, LDAF II has fastest 
convergence, but with significant increase in complexity. This 
can be shown in Figure (5) Legendre ADF structure provides 
faster convergence and better steady state ERLE than LMS, 
Figure (6). The complexity of the LDAF Il is caused by taking 
the DLT of the both input and the desired response. As 
mentioned in the [6], increase in the filter order requires the 
fmding the roots of the large order discrete laguerre functions 
which is very complex The complexity of the filter structure 
may be overcome by using a very large-scale integrated (VLSI) 
custom chip. Further research to reduce the complexity of the 
LDAF II algorithm would be worthwhile due to the desirability 
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Figure 1 Block diagram of the Transform domain ADF 
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Figure 2 Block diagram of the Laguerre domain ADF 
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Figure 4 ERLE of LMS ADF 
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Figure 5 ERLE of LDAF II 

Figure 3 Block diagram of the LDAF II in echo cancellation 
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Figure 6. ERIE of Legendre ADF 


