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ABSTRACT 

Our previous work has indicated that the careful application of 
signal detection theory can dramatically improve detectability of 
landmines using time-domain electromagnetic induction (EMI) 
data [L. Collins, P. Gao, and L. Carin, IEEE Trans. Geosc. 
Remote Sens., in press]. In this paper, classification of various 
metal targets via signal detection theory is investigated using a 
prototype wideband frequency-domain EMI sensor [I.J. Won, 
D.A. Keiswetter, and D.R. Hansen, J. Envir. Engin. Geophysics, 
253-64 (1997)]. An algorithm that incorporates both the 
uncertainties regarding the target-sensor orientation and a 
theoretical model of the response of such a sensor is developed. 
The performance of this approach is evaluated using both 
simulated and experimental data. The results show that this 
approach affords substantial classification performance gains 
over the traditional matched filter approach, on the average by 
60%. 

1. INTRODUCTION 

A persistent problem with traditional narrowband EM1 sensors 
involves not just detection of metal objects, but discrimination of 
targets of interest from clutter. Until recently, the energy in the 
output of such sensors was calculated, and a decision regarding 
the presence or absence of a target was made based on this 
statistic [ 11. This approach leads to excessively large false alarm 
rates. When each piece of buried metal must be excavated in 
order to determine whether it is a target of interest, significant 
costs are incurred both due to lost time, and costs associated with 
digging. This problem is particularly pernicious in real world 
landmine detection. In order to facilitate the discrimination of 
targets of interest from other pieces of metal, several 
modifications to traditional EMI sensors have been considered 
[l-6]. One promising approach is to operate the sensor in the 
frequency-domain by utilizing wideband excitation. The 
frequency dependence of the induced fields excited by buried 
conducting targets can then be exploited by a detector. 

This paper is organized as follows. In Section 2 we discuss a 
model which calculates wideband EM1 responses. In Section 3 
we describe a new prototype wideband frequency-domain EM1 
sensor, the GEM-3 [7]. A model-based Bayesian approach for 
discriminating targets is discussed, and results from both the 
simulated and measured data are shown in Section 4. Finally we 
summarize our major findings and suggest areas for future work. 

2. MODEL 

In this paper, a model-based Bayesian decision-theoretic 
approach is investigated to discriminate four man-made metal 
targets of different shapes, sizes and metal types under conditions 
where the target/sensor orientation is unknown. In order to model 
the signature of these targets, a method of moment (MOM) 
analysis is used to predict the theoretical response from the target 

[8][9]. The theoretical calculations are appropriate for highly 
(but not perfectly) conducting and permeable targets that can be 
characterized by body of revolution (BOR), i.e. a target that is 
rotationally symmetric about an axis [lo]. The excitation is from 
a current-loop. Inputs to the model include the exact shape, size, 
constitutive parameters of the target, and the horizontal and 
vertical distance from the center of the sensor to that of the 
target. When the above parameters are specified, the theoretical 
wideband EM1 response can be calculated. 

The calculation provides the theoretical induced voltage 
(magnitude and phase, or in-phase and quadrature components) 
for each target and frequency considered. Later in this paper, it is 
shown that by incorporating the model into the detector 
formulation the classification performance is improved 
dramatically under uncertain environmental conditions. 

3. SENSOR 

Using data collected from a prototype wideband frequency- 
domain EM1 sensor, the GEM-3, developed by Geophex, Ltd., 
the effectiveness of the model is tested and a decision-theoretic 
discrimination algorithm is applied to both simulated data and 
real data measured by the sensor. Instead of using a pulse 
excitation (as is the case for time-domain EM1 sensors), the 
transmitting coils of the frequency-domain EM1 sensor send out 
a complex waveform consisting of a user-defined set of 
frequencies [7][ 1 I]. The sensor records the real and imaginary 
parts (in-phase and quadrature) of the induced voltage at the 
receiving coil, relative to that on the transmitting coils. This ratio 
is multiplied by 106, and expressed in units termed parts-per- 
million (ppm). Thus, sensor output is subject only to the noise at 
the frequencies of interest, not within the whole frequency band, 
as is the case for time-domain EM1 sensors. Frequency-domain 
EMI sensors can thereby achieve much higher signal-to-noise 
ratios (SNRs) compared to time-domain systems. In addition to 
the improved SNR, it has also been shown that the frequency- 
domain EMI signatures differ significantly across targets [8], 
which provides the underlying physical mechanisms important 
for discriminating, identifying, or classifying targets. 

The model output and the sensor output are not reported in the 
same units. Therefore, the response predicted by the model is 
converted into ppm. Let c(w) represent the calibration constant 
for frequency w, the M by I vector A represent a set of 
measurements obtained at several (M) positions, and the M by 1 
vector B represent model outputs for the same target and 
positions. We set &=A, and a least-squares method is used to 
obtain the calibration constants as a function of frequency. 

4. MODEL-BASED RESULTS 

The uncertainty inherent in the sensor output for a particular 
object is not only due to the additive noise, but also the fact that 



the relative position between the sensor and the target is 
unknown. In this work, we investigate the classification 
performance of a Bayesian detector that incorporates modeled 
wideband EM1 signatures as well as orientation uncertainties. 

4.1 Problem Setup & Solution 

Four metal targets are used for both the simulations and 
experimental measurements: an aluminum bar-bell, an aluminum 
disk, a thick brass disk, and a thin brass disk. The diameter of 
each of these targets is 5.08 cm. The heights of the targets are 
2.897 cm, 2.667 cm, 2.34 cm, and 0.3175 cm for the aluminum 
bar-bell, the aluminum disk, the thick and thin brass disk, 
respectively. The response from a target depends on the 
constitutive parameters, geometry of the target, as well as the 
horizontal and vertical distance from the center of the sensor to 
that of the target. In the calculations, six frequencies: 3,990, 
8,010, 12,030, 14,990, 20,010, and 23,970 Hz are chosen to 
avoid 60 Hz power disturbances. It is assumed that the sensor is 
subject to a small amount of additive Gaussian white noise. This 
assumption is verified by the experimental data. We exploit 
Bayesian decision theory to formulate an optimal classifier to 
discriminate these targets. 

Since the sensor is subject to noise which is assumed to follow a 
Gaussian distribution, the distribution of the sensor outputs at a 
known height and horizontal position is a Gaussian random 
vector. The mean is the theoretical response and the variance is 
equal to that of the additive noise. Let H, represent the hypothesis 
that the ith target is present, where i=1,2,3,4. The received data 
from the ith target can be modeled as: 

where j corresponds to frequency, j=1,2,. .,6, xii is the received 
data from the sensor, A, is the predicted response obtained from 
model for the ith target at the jth frequency at a known depth and 
horizontal position relative to the center of the sensor, and n, is 
i.i.d. white Gaussian noise with zero mean and variance of CT,,~. 
Let qi represent the u priori probability that hypothesis H, is true. 
We further assume that the cost of a correct decision is zero, and 
the cost of any wrong decision equals 1. Bayes’ solution for this 
classification problem [ 12][13] is to decide that Hi is true if 

pWi 1x1 qiP(x’H,) ,I 

PW, IN= q,p(xlHk) 
(2) 

is satisfied for any kzi, wherep(xlH,) is the probability density or 
likelihood function of data x given H,, p(H,lx) is the (I posteriori 
distribution or discriminant function [ 141, and x is the received 
data from the sensor at a known position. Assuming the 
magnitude and phase of the frequency response are independent, 
x is a vector containing both the magnitude and phase 
information. Therefore, when sampled data x is received, we 
decide in favor of hypothesis H, where 

qip(xIHj) = mkyIqkp(xIHk)J k = 1,2,3,4 (3) 

Thus, we decide in favor of a hypothesis that has the largest a 
posteriori probability at x among the 4 pdfs. Since we have no a 
priori knowledge on q,, an equal probability assumption for each 
target results in q,=1/4. Therefore, the alternative discriminant 
function [ 141 is: 

p(X I Hi) = (2n)-“1~1-“2 exp[-$x-A,)rX-‘(x-Ai)](4) 

where N is the number of frequencies, x and Ai are 2N by 1 
vectors, and C is the covariance matrix of x. Given the 
assumptions on the noise process, Z is a diagonal matrix. After 
taking the logarithm and incorporating the constant into the 
threshold, the alternative discriminant function simplifies to: 

logp’(xIH,)=(x-A$k-‘(x-A,) (5) 
The discriminant function obtained above is for a known height 
and horizontal position, and can be implemented as a bank of 
matched filters. This solution is optimal only under the 
assumptions that all the parameters are known, and the sensor is 
subject only to Gaussian white noise. 

A more accurate assumption is that the height and horizontal 
position is uncertain, since the exact position where 
measurements are obtained is unknown in practice. In this case, 
the matched filter bank is not the optimal solution. Hence, in 
order to obtain the alternative discriminant function for the 
received data, the effect of these random factors must be 
integrated out, i.e. 

where h represents the height of the sensor from the target; x, y 
represent the horizontal position of the sensor; and p(h) and 
p(x,y) are the a priori distributions of the position factors. Monte 
Carlo integration was used to calculate this integral. 

The performance of both the matched filter bank and the optimal 
classifier is investigated by using simulations and measurements. 
The results are shown in Sec. 4.2 and 4.3. 

4.2 Simulations 

In order to test whether the classification performance is 
improved by incorporating the model into the classification 
formulation, several cases, such as 1) fixed position, 2) random 
height, 3) random horizontal position, and 4) both height and 
horizontal position random are simulated. Both the matched filter 
classifier and the optimal classifier are then applied to the data. 
After obtaining the theoretical model of each target at different 
positions, Gaussian distributed white noise with parameters 
similar to those measured experimentally is added to the 
theoretically predicted values. The synthetic data is generated 
and the classification procedure as described in Sec. 4.1 is 
applied. 

4.2.1 Fixed Height and Horizontal Position 

First, the case where all the position parameters are known 
exactly is considered. The model of each target at the same 
position and all desired frequencies is calculated. Then, by 
adding Gaussian random noise with zero mean and variance of 
a,,‘, 10,000 realizations for each target are generated. The 
decision of which target is present is made based on Eqn. (3) by 
using the calculation of a matched filter expressed in Eqn. (5). 
Because of the fact that the wideband EM1 signature of these 
targets is significantly different [8] and the experimentally 
derived a,2 is low, the performance is perfect. 

4.2.2 Height Uncertain, Fixed Horizontai Position 

Next, the case where only the height of the sensor from the target 
is unknown and the target is located under the center of the 
sensor is considered. This situation occurs in a real detection 
scenario when the sensor operator can accurately center the 



sensor, but the burial depth of the mine is unknown. The height 
of the sensor was modeled as a Gaussian distributed random 
variable with mean of 15 cm and variance of 1.94’. Fig. 1 shows 
the performance of filters matched to the modeled response of 
each target at the mean height along with that of the optimal 
classifier. Clearly, substantial improvements in classification 
performance are obtained by the optimal classifier. 
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Figure 1. Comparison of matched filters and the optimal 
processor under uncertain height, fixed horizontal 
position conditions. 

4.2.3 Horizontal Position Uncertain, Fixed Heieht 

Thirdly, we simulated the case where horizontal position is 
uncertain. It is assumed that the sensor is located at a known, 
fixed height. Because the exact positions of mines are unknown 
to the sensor operator during detection, we assumed a uniform 
distribution in the horizontal plane. Fig. 2 shows the simulation 
results of the matched filter and the optimal classifier when the 
horizontal positions of targets are uniformly distributed. Again, 
the performance of the optimal classifier is substantially better 
than that of the matched filter. 
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Figure 2. Comparison of matched filters and optimal 
processor performance under the uncertain horizontal 
position, but fixed height condition. 

4.2.4 Both Height and Horizontal Position Uncertain 

In the final simulation, both height and horizontal position are 
uncertain. The height is assumed to follow a Gaussian 

distribution with mean of 15 cm and variance of 1.94’. The 
horizontal position follows a uniform distribution (within a 20cm 
by 20cm square). Fig. 3 illustrates the performance of the two 
processors. The results in Fig. 1, 2 and 3 indicate that for the 
matched filter bank the performance becomes progressively 
worse as the position uncertainty increases. Clearly, 
incorporating the uncertainty of these environmental parameters 
into the processor affords a significant performance gain over the 
matched filter. 
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Figure 3. Comparison of matched filter and optimal 
processor performance when both height and horizontal 
position are uncertain. 

4.3 Real Data 

Simulation has shown that performance improvements can be 
achieved when the environmental uncertainty is incorporated into 
the detector. To verify this result, real data was collected using 
the GEM-3. In this sub-section, the results of implementing these 
processors using the measured data are described. 

The measurements were taken in free-space. The GEM-3 was 
mounted on a wooden rack with the sensor head approximately 
1.8 m above the wooden base of a platform. Both rack and 
platform contained no metal parts. The rack assembly allows 
placement of a target on a wooden shelf at various distances 
beneath the sensor head. 

In order to convert the theoretical predictions to ppm the 
measurements with the four targets at known positions were 
taken so the calibration coefficients could be calculated. Each 
target was placed beneath the center of the sensor head at 
distances of 17 cm, 19 cm, 20 cm, 21 cm, and 23 cm. Using these 
20 measurements, calibration coefficients were calculated by the 
least-squares method, Fig. 4 shows the theoretical model 
predictions and the measurements. As has been noted previously, 
the model predicts the GEM-3 response well [S]. 

To obtain the remaining data, measurements were taken at 7 
heights from 17cm to 23cm in 1 cm increments. The distribution 
of height is assumed to be Gaussian with mean of 20 cm and 
variance of 1.94’ (the mean is different from the simulation, 
because for some targets the height cannot be less than 15 cm, 
otherwise the sensor response saturates). At each height, 
between 11 and 36 measurements were taken. The exact count 
was calculated based on the assumed distribution. At each height 



the position of each measurement is uniformly distributed within 
a 20 cm by 20 cm square. For each target, there were a total of 
328 measurements taken. 

Figure 4. Comparison of measurements and theoretical 
predictions for the thin brass disk when the distance from 
the target to the sensor is 20 cm. 

Two signal processing techniques are investigated: matched 
filters that match to the response at the mean position for each 
target and the optimal classifier that incorporates the uncertainty 
into the processor. Fig. 5 illustrates the performance of these two 
methods. Clearly, better performance is achieved by the optimal 
processor; performance improves on the average by 60%. 
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Figure 5. Comparison of matched filters and optimal 
processor performance under the condition of both height 
and horizontal position unknown for measured data. 

5. SUMMARY 

In this paper, we utilize a Bayesian decision-theoretic approach 
to classify metal targets using wideband EM1 data. Four man- 
made metal targets were used. Results from both simulation and 
measured data, shown in Sec. 4, indicate that incorporating the 
uncertainty associated with the target/sensor orientation into the 
processor affords a significant performance gain over a processor 
that is matched to the predicted response at the mean expected 
target position. It is also noted that, as expected under conditions 
of uncertainty, the performance of both the matched filter bank 
and the optimal processor drops compared to that of the signal 
known exactly case. Though the optimal classifier can improve 
performance under uncertain conditions over matched filters, it 
will never achieve the performance obtained when no uncertainty 
is present. 

Our preliminary work indicates that we can effectively 
discriminate different metal targets using wideband EMI signals 
by incorporating an accurate physical model and uncertainty of 
environmental parameters into the classifier. Performance can be 
dramatically improved over the standard approach that ignores 
environmental uncertainty. The simulations and measurements 
are performed in free-space; in the future, measurements and 
analysis from buried targets will be taken. 
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