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ABSTRACT 

Frequency domain adaptive filters have gamed much attention 
recently. Although some work on performance analysis has been 
reported, there is still much to be done. This paper presents a 
convergence analysis of the multidelay tiequency domain 
adaptive filter. We show, for the first time, the relationship 
between the convergence step-size and the convergence rate. 
The effect of step-size on adaptation accuracy is presented also. 
Extensive simulation results are provided to support the analysis. 
Surprisingly, all block processing algorithms run well even 
though the step-sizes utilized are much bigger than the 
convergence bounds currently available in the literature. 

1. INTRODUCTION 

Adaptive digital filters have become very popular in many 
applications. In recent years, there has been popular attention in 
applications that require filters with very long impulse response 
[5]. For example, in acoustic echo cancellation, we may need 
thousands of filter coefficients to achieve the desired level of 
performance [4]. An attractive approach to reducing the 
prohibitive computational complexity associated with large filter 
coefftcients is to use frequency domain adaptive filters [1],[4]-[6]. 

Several frequency domain adaptive filtering algorithms have 
been proposed in the past. For an application that requires L filter 
coefftcients, the FLMS (fast least mean square) algorithm 
requires five 2L-point FFT’s for processing each L point block of 
data [l]. There are practical implementation problems of the 
FLMS such as long block delay and inefficient use of a hardware. 
By segmenting the filter into several partitions and using as many 
adaptive filters, [6] proposed the MDF (multidelay FLMS filter) 
that allows one to choose the size of an FFT. The MDF selects 
the desired block size N and the number of filters K in a way that 
L=NK. For simplicity, we can assume that L and N are power of 
2 integers. Note that the MDF employs 2N-point FFT’s. A 
feature of the MDF is that the transform size and block delay all 
depend on N. A more general structure that allows one to select 
transform size and the resulting block delay independently is the 
GMDF (generalized MDF) [4]. 

In this paper, a simple performance analysis is given of the 
(multidelay) frequency domain adaptive filter. The properties of 
interest are convergence rate and adaptation accuracy. While [4] 
presented a comprehensive performance analysis, we show new 
results that are different from that in [4]. Extensive simulation 
results presented in the paper indicate that bounds of 

convergence step-size could be much higher than that given by [2] 
and [3]. The rest of the paper is organized as follows. Section 2 
briefly reviews the time domain LMS and the multidelay 
frequency domain LMS. Section 3 presents a performance 
analysis of the MDF. Examples that demonstrate convergence 
properties are provided in Section 4. The concluding remarks are 
made in Section 5. 

2. LMS ADAPTIVE FILTERS 

2.1 Time Domain LMS 

Let x(n) and d(n) represent the reference input and the desired 
output signal, respectively, to the adaptive filter. Let L denote the 
total number of filter coefficients. Define the L x 1 coefftcient 
vector H(n) and the input vector X(n) as 

H(n) = [ho(n),h,(n),...,hL-,(n)lT 9 (1) 

X(n)=[x(n),x(n-l),*~~,x(n- L+l)]T. (2) 

The LMS is described as 

e(n) = d(n)- HT(n)X(n), 

H(n + 1) = H(n) + u&(n)e(n) . 

In practice, we may replace (4) by 

(3) 

(4) 

H(n + 1) = H(n) + CI 
Y(n)X(n) + CT 

-W+(n) 

or 

H(n + 1) = H(n) +LX(n)e(n) 
Lr (0) 

where the positive step-size p is bounded by 2, cr is a small 

positive number and r(0) is the estimated autocorrelation 

function value of x(n) for lag 0. 

2.2 Frequency Domain Block LMS 

We review block LMS implemented in the frequency domain. 
The idea is to carry out the time domain convolution of block 
LMS by overlap-save fast convolution. The FLMS developed by 
[l] processes and updates filter coefficients for each L samples of 
data. The MDF is another implementation of the FLMS. It 
segments the filter into K blocks in a way that L=NK. As a result, 
the MDF updates the weights for each N data it receives. Denote 



the vectors formed by the N new samples of x and d during the 
jth block iteration as 

X, = [x(jN),x(jN + l);~~,x(jN + N - l)]r , 

and 

(7) 

D, = [d(jN),d(jN + 1);..,d(jN + N - l)]r . (8) 

The coefftcient vector H can be expressed as 

H, =W;,J;TJ,-& -,,, IT, (9) 

where H,,, , is the coefficient vector of the mth filter during the 

jth iteration. In equation (9), H,,,, is an N x 1 vector. 

The frequency domain coefficient vector is obtained by taking 
FFT of an augmented 2N x 1 vector, 

wm,, = FFT[HL,,,O,O,.-.,O]~ ,m =O, 1, . . . . K-L 

-77 
(‘0) 

and the frequency domain input vector is calculated as 

U, = FFT[X,T_,,X;]T. 

The tilter output vector Y, is obtained as 

K-l 

('1) 

Y, = IastNelements of FFT-*[~W,,,,o*U,-,,,I, 
m=O 

(12) 

where l * represents element-to-element multiplication. 

The N x 1 time domain error vector is then given by 

E,=D,-Y,, (13) 

and the 2N x 1 frequency domain error vector is formed as 

R, = FFTIO,O,...,O,E;]T (14) 
i 

Frequency domain coefficient vectors are updated as 

W m,,+, =W,,+~Y,,.m=O,l,..., K-l (15) 

where u, is the block step-size. Frequency gradient ‘I’,,,, is 

calculated as 

I&,,, = first N elements of FFT'[c,;_,,, l *Cl,] , 

Y ",, = FFT[bT 0 0 ..e,OIT, 
m'J'5- 

where c,-,,, is the complex conjugate of UJ+. 

(16) 

(17) 

3. CONVERGENCE PROPERTIES 
Because the FLMS is simply a fast implementation of the block 
LMS algorithm, both algorithms have the same convergence 
property [5]. Note that the MDF is another implementation of the 
FLMS, it has the same convergence properties as well. Therefore, 
by employing the convergence results presented in [2], we 
conclude that the MDF and LMS algorithms converge at the 
same rate and achieve the same adaptation accuracy if u, = Np, . 

We consider adaptive filters with normalization in the following. 
If we use (6) or (5) for the LMS, the associated frequency 
coefficients update equation of the MDF is 

W ,,,,‘+I = w,“,J +&---- ’ Y 

N NC(O) T” 

m=O, 1, . . ..K-1 (18) 

It is straightforward to see that the MDF with equation (18) and 
the LMS with equation (6) have the same converge rate and 
adaptation accuracy if ue = Nu . 

Assuming that x(n) is white, then from Parseval’s relation, we 
can approximate the power of input signal in each frequency bin 
by 2Nr(O) . Let the 2N xl vector Z, denote the estimated 

t?equency domain power of the jth block iteration, we can rewrite 
equation (18) as 

W “,,J+l = wm,J + Sk%,’ “‘J) 

=Wm,J+~(Ym,J./ZJ),m=O,l ,..., K-l (19) 

In equation (19), l / represents element-to-element division. In 
practice, Z, can be obtained as 

zj = Pzp, + (l- P)(U, l *uj ) 3 (20) 

where B is a weighting factor. The MDF with equations (19) 
and (20) for coefficients updating is referred to as the self- 
orthogonalization implementation [3],[4],[6]. 

With the assumption that x(n) is white, equation (19) is an 
accurate implementation of equation (18). Therefore, we 
conclude that the self-orthogonalized MDF and the normalized 
LMS have the same convergence property provided that 

PB = Ncl. 

Based on [2] and [3], usand u have the same convergence 

bounds. However, results of all simulation presented in the paper 
indicate that convergence bound of pg could be much higher. 

4. EXAMPLES DEMONSTRATING MDF 
CONVERGENCE PROPERTIES 

Computer simulation was conducted to verify the analysis for the 
convergence rate and the adaptation accuracy. We consider the 
problem of system identification here. The system to be 
identified has an impulse response of 5 12 taps obtained by 
truncating an acoustic impulse response measured in a small 
office with 8000 Hz sampling rate. The excitation signal was 
white Gaussian with zero mean and variance 0.05. This setup 
gave an almost unit power of the system. White Gaussian noise 
of zero mean and variance 0.01 was added. 

We have employed LMS algorithm with equation (6), the self- 
orthogonalized MDF, and the following BLMS (block LMS) 

e(jN+l)=d(jN+I)-H/TX(jN+l),l=O, l,...,N-1 (21) 

H 
‘+I (22) 



Several cases were studied: three convergence step-sizes 
( u =0.05, 0.1, and 0.2) were used for the LMS; four block sizes 
(N=512,256, 128, and 64) were practiced for the MDF and block 
LMS. The convergence step-size us for the block adaptive 

filters was selected as us = Nu ( u =0.05, 0.1, and 0.2) so that 

each algorithm should have the same performance properties. It 
is obvious to see that such setup violate the convergence 
condition of [2] and [3] for block adaptive filters. 

We have conducted 10 independent runs for each case. 
Simulation results validate our analysis made in Section 3. Due 
to page limitation, only part of the results was presented. For the 
purpose of smoothing the curves, mean squared error samples are 
averaged over 32 points. 

Learning curves for u = 0.2 are shown in Figure 1. Figure (la) 

shows result for the LMS with u = 0.2 ; Figure (lb) for the 

BLMS with uB = pN = 51.2 (N=256); Figure (lc) for the self- 

orthogonalized MDF with ue = pN = 102.4 (N=512); and 

Figure (Id) for the self-orthogonalized MDF with 
,.iB = fl= 12.8 (N=64). Similarly, learning curves for 

u = 0.05 are shown in Figure 2. It is easy to observe close 

agreement between analytical and experimental results. 

5. CONCLUDING REMARKS 

We have investigated the convergence properties of multidelay 
frequency domain adaptive filter. Extensive simulation results 
were provided to verify our analysis. Surprisingly, all block 
processing algorithms run well even though the step-sizes 
utilized are much bigger than the convergence bounds. We are 
currently investigating this issue. 
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Figure1 . (1 a) LMS, p=O.2; (1 b ) BLMS, pp5 1.2, N=256; 

(lc) MJIF, pB=102.4, N=512; (Id) MDF, ~~~12.8, N=64 

Figure2. (2a)LMS, p=O.O5; (2b )BLMS, ~~=12.8, N=256; 

(2~) MDF, p*=25.6, N=512; (Id) MDF, ~~=3.2, N=64 


