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ABSTRACT 

A novel class of robust detectors, the rank order diversity (ROD) 
detectors, is proposed. The ROD detectors exploit the diversity in- 
herent in any repetition code by sorting the sampled channel out- 
put. weighting each of the sorted samples according to their rank, 
and summmg the weighted order statistics to form the test statistic. 
The ROD detectors subsume the globally optimal detectors for the 
short-tailed uniform and the normal distributions, as well as the lo- 
cally optimal detector for the heavy-tailed double-exponential dis- 
tribution, suggesting a high efficiency of the ROD detectors over 
a vast range of possible noises statistics. It is shown that for large 
sample sizes and under mild conditions on the noise statistics, the 
ROD detector achieves a probability of error less or equal than 
that of the linear detector with equality only for the normal distri- 
bution. The performance of the ROD detectors is illustrated in a 
DS-CDMA network. 

1nde.x Terms: robust detection, wireless communications, rank 
order diversity, order statistics 

1. INTRODUCTION 

The design of detection schemes for spread spectrum multiple ac- 
cess (SSMA) networks in which security restrictions do not permit 
the distribution of all users signaling parameters is a formidable 
task, as the multiple access interference (MAI) has a non-Gaussian 
distribution with an exact shape that depends on the received power 
of each of the active users in the network. Variations in the users 
power due to roaming users, the advent or departure of users, and/or 
imperfect power control cause the statistics of the MAI to change 
rapidly and to assume vastly different characteristics ranging from 
near-Gaussian. over multi-modal, to heavy-tailed. 

Under these conditions, detectors that are optimized for a spe- 
cific distribution, including maximum-likelihood and multi-user 
detectors. are clearly not applicable as they suffer a drastic degra- 
dation in performance even for apparently small deviations from 
the nominal assumptions. While many of the classical robust de- 
tectton schemes. including minimax detectors and non-parametric 
detectors, can offer an acceptable performance over a limited class 
of possible noise statistics [I], they become inefficient when the 
uncertainty about the noise distribution is large, as is the case in 
spread spectrum networks. Adaptive detectors who learn about 
the noise statistics and adjust their signal processing structure ac- 
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cordingly have the potential to maintain a good performance for 
all possible noise statistics. 

Along this line. we introduce a novel adaptive detector for the 
robust detection of binary antipodal signals in non-Gaussian noise. 
The proposed rank order diversi (ROD) detectors employ a lin- 
ear combination of rank order statistics (L-statistic) - samples re- 
arranged in increasing order of their values -to test for the polarity 
of the transmitted signal. The weights of the test statistic are ad- 
justed to the prevailing noise characteristics based on the second- 
order moments of the order statistics of the noise. The test statistic 
is drawn from the class of robust estimates in mathematical statis- 
tics where it was shown [2] that its variance when employed as a 
location estimate is strictly less than that of the sample mean for 
all symmetric distributions except the Gaussian. We show that this 
property translates, asymptotically as the number of samples goes 
to infinity and under mild assumptions on the noise distribution, in 
a probability of error of the ROD detector that is less than or equal 
to that of the linear detector with equality only for Gaussian noise. 

We illustrate the potential of the ROD detectors in a DS-CDMA 
network in which users are allowed to depart and new users, whose 
parameters are not known, are permitted to join the system. The 
applications of the ROD detectors, however, are not limited to 
spread spectrum networks. In particular, it is shown in this paper 
that exploiting the rank order diversity can improve the capacity 
of anv system in which linear detection schemes are employed de- 
spite prevailing non-Gaussian noise statistics. 

2. OPTIMAL DETECTION AND RANK ORDER 
DIVERSITY DETECTION 

Consider the coherent detection of a constant binary antipodal sig- 
nal in additive white noise ‘. Denoting the observations from the 
noisy signal by X,, this problem can be put in the framework of a 
binary hypothesis test: 

H+I : X, = +l + 2, 
H-1:X,=-1+2,, i=1,2 ,..., N, (1) 

where the 2, are assumed to be independent noise samples with 
a common univariate zero-mean probability density function (pdf) 
of the form f(x) = f(~/u)/cr, where 0 > 0 is a scale parameter. 
The optimum test for H+I versus H-r in the sense of minimizing 
the probability of an erroneous decision, i.e. choosing H+l when 
b = -1 or H-1 when b = +l. can be put in the form 

‘Note that restricting the signal to be constant does not result m a loss 
of generality due to the assumption of white noise. 



where ,w,~~(L) = In[f(z - l)/f(~ + 1)1/o, to stress the fact 
that each sample is weighted according to its value by a weight 
function that depends on the exact density of the noise in a critical 
way. The test statistic of the ROD detector achieves robustness by 
weighting each sample according to the sample’s rank, or its value 
relative to those of the remaining samples, and sums the weighted 
samples. 

Definition: Let X1i, 5 Spa) 5 . . 5 X(N) be the order statistics 
(OS) obtamed by rearranging the observations in (I) according to 
their values. then the ROD detector employs 

(3) 

to text for H+* versus HP 1. where the wL are real-valued weights. 

The ROD detector can be shown to be glob& oprimal for the 
r~rif)rrn and the Gaussiarr distributions, for which Trod reduces to 
the mid-range T,, = Xcl) + X(N) and to the linear test statis- 

tic Tl,,, = c;z, X, IN, respectively. For the double-exponential 
noise density and a weak signal. Trod reduces to the sample me- 
diary. the test statistic of the locally optima/ detector. Note, that 
in all three cases the ROD detector uses the maximum-likelihood 
locntiorl estimator as a test statistic. 

The following Theorem. proven in [3], suggests that the mini- 
mization of the probability of error of the ROD detector for a sym- 
metric but otherwise arbitrary distribution is equivalent to finding 
those weights that maximize the distribution of the L-statistic of 
the rrot.ye samples in the interval (-1, +l) subject to a location 
invariance constraint. 

Theorem: Denote the vectors of the OS of the noise and the cor- 
responding weights by z = [Z(r), ZCz), . , ZC~~]~, and w = 

[Wl. wz,. . WN]‘. respectively, and let EV(z; w) = wTz, then 
the weight vector that minimizes the probability of error of the 
ROD detector is 

w. = argm;xP{]I’(z;w)] < 1) (4) 

subject to wTe = 1. where e is a N-long vector of ones. 

Except when UJ, = 0 for all i but one or wz = c for all i, a 
closed-form expression for P{ IY] < l} is difficult to obtain [3]. 
obstructing the derivation of a closed-form solution for the optimal 
weights. Asymptotically, however, as N -+ co the distribution 
of YV converges to a normal distribution for sufficiently smooth 
weights [3]. Thus it suffices to minimize the variance of Y to find 
the asymptotically optimal weights wO = eTQ/eTQe, where Q 
is the Inverse covariance matrix of z [3]. The L statistic with the 
weights w,, is known as the best linear unbiased estimator (BLUE) 
of location [2]. i.e. the 

with equality if and only if the noise distribution is Gaussian. The 
inequality (5) implies that the ROD detector will achieve aproba- 
billty C$ error that is asymptotically less or equal than that of the 
lirrenr detector whenever Y(z; wO) is normally distributed. It can 
be shown [3] that this is the case if there exists some constant K 

such that 1imN +,N(N + ~)A,v = K. where 
AN = max,=l,z,. .,N-1 Iwo(i + 1) - wO(i)l. 

The following proposition, which follows directly from the 
definition of the statistical expectation. becomes useful in solving 
adaptively for the optimal weights for finite N. 

Proposition: Maximizing the P{ lwTz] < 1) with respect to w 
is equivalent to minimizing the risk E{g(wTz)}. where g(y) = 
0 if y < 1 and g(y) = 1 otherwise. 

Unfortunately, g is discontinuous, making the risk function 

difficult to minimize. Approximating g by g’(y) = 1 - eKya, we 
can formulate the optimization problem as follows: The weights 
of the order statistic detector satisfy 

w. = arg max E{ 1 - ePCwrx” } 
w 

(6) 

subject to wTe = 1. This constrained optimization problem has a 
unique solution due to the convexity of g’, permitting a gradient- 
based solution. The problem of constraint adaptive optimization of 
L-filters has been solved previously for a mean-square error cost 
function in [4]. In this work. the authors developed an adaptation 
procedure that uses the location invariance constraint to eliminate 
the coefficient with the slowest convergence rate (the coefficient 
that corresponds to the median). This technique can be extended 
to the problem at hand. Define the reduced weight vectors 

wi = [WI,. ,wvlT and wz = [wN+~ , ZU,V]~, (7) 

and similarly 

xi = [Xcl), . , XC~)lT and xa = [X(v)>. , -ycS1lT, 

(8) 
and note that 

w = [WY, 1 - erwr - eTwZ> w.;]~, (9) 

and x = [xl, XC w), xa]. Using the above. we can rewrite 
2 

(WTX)” = wTRw, (10) 

where 

R=[z 1; 21, (II) 

where R, = x,x:, i = 1,2,3,4, rl = 4Y~(h~+lip~~,, i = 
1,2, and r = ~Y~(M+~),~~‘. Using the short weight vectors (7). 
equation (IO) can be simplified further: 

(wTx)” = r - 2vTp + vTR’v, (12) 

where v = [WY, w:]‘, p = [reT - rT,reT - rf]‘. and 

R’ = 
[ 

RI + reeT - 2rleT Rz + reeT - 2rleT 
R3 + reeT - 2rzeT Rq + veeT - 2rzeT 1 

(13) 
Using (12), the optimization problem (6) can be stated in an un- 
constrained form in terms of the reduced weight vector: 

v, = mg max E{ 1 - e--(r--2vTp+v TR’~)), (14) 
Y 



To solve for v,. we need the gradient of the risk function J = 
E(1 _ p-(~-?~Tp+~TR’~) } with respect to v. Straightforward 
algebra yields 

dJ 
- = -E(2p - (R’ + R’T)v)e 
i3V 

(-(4vTp+vTR'v)), (15) 

Using instantaneous estimates, we obtain the following iterative 
algorithm: 

Definition: The reduced weight vector at iteration n is given by 

v(n+l) = v(n)+~(p-R,~)e(-(‘-~~~~+~~~‘“))(n), (16) 

where R, = (R’ + R’T)/2 and ,u is a positive step-size. 0 

Using ( 16). the full set of weights can be easily computed from 
(9) and (7). Note that the update term in (16) is a nonlinear func- 
tion of the instantaneous estimates of the second moments of the 
order statistics of the noise. Necessary conditions for the con- 
vergence of (16) under assumptions similar to the independence 
assumptions made in the analysis of linear filters can be found in 

[31. 

3. ASYMPTOTIC PERFORMANCE 

A useful measure of comparison of two detectors under large- 
sample-size conditions is the asymptotic eficiency. The asymp- 
totic efficiency of detector A when compared to detector B, de- 
noted by =~RE..I.B, is defined as the ratio of the number of samples 
needed by detectors A and B. respectively, to achieve some fixed 
probability of error as the sample size N goes to infinity. Under 
certam regularity conditions the AREA,B can be expressed as the 
ratio 

AREA,B = 2, (17) 

where &T is the ejjkacy of a detector using test statistic T [5]. The 
following Theorem. proven in [3]. gives the efficacy of the ROD 
detector with sufficiently smooth weights. 

Theorem: Suppose the weights of the ROD detector can be put 
in the form W, = J(h)/N, where J(u), 0 < u 5 1, is an 
associated weight function, then the efficacy of the ROD detector 
operating in noise with a density f = F’ is given by 

&rod = l/c’(J, F), (18) 

whereu’(J, F) = 2 s ~-oo<z.,yc+ao J(F(z))J((F(y))(F(~)(l- 
F(y)))dzdy. In the special cases where the ROD detector reduces 
to the linear and the median detector, we have elZn = l/a2 and 
&med = -If”(o), respectively. 

4. APPLICATION IN A DS-CDMA NETWORK 

Consider a wireless DS-CDMA network in which K terminals are 
uniformly distributed within a circular cell around a centrally lo- 
cated receiver. Figure 1 shows a typical realization of such a sys- 
tem for K = 8(9) users. Assuming antipodal modulation, random 
binary spreading codes consisting of N chips, and users that are 

Figure 1: Tvpical user distribution. 

synchronized at the chip level, the noise samples in (1) can be 
shown to be put in the form 

2, =&+rlz, (19) 

where 6% is the multinomially distributed MA1 component and qZ is 
a zero-mean Gaussian random variable with variance cr’. Conse- 
quently, the density function of the compound noise is continuous 
with, in general, multiple modes. 

Figures 2(a)-(c) compare the performance of the linear detec- 
tor, the mid-range detector, the ROD detector, the optimal (single- 
user) detector, and the multiuser MMSE detector when employed 
by the two strongest users in the system (from the receivers point 
of view), labeled as 1 and 2 in Fig. 1. The optimal coefficients of 
the ROD detector are obtained by using algorithm (16). where, for 
simplicity, the optimization is performed for the hypothetical situ- 
ation in which the background noise vanishes. The nonlinearity of 
the optimal single-user detector, gopt, and the coefficients of the 
MMSE detector can be found in [3]. 

Consider user 1 (Fig. 2(a)) first. The linear detector, the single- 
user maximum-likelihood (ML) detector, and the multi-user MMSE 
detector achieve identical bit error rates due to the fact that the 
MA1 seen by this user is a superposition of comparatively weak 
signals assuming a near-Gaussian distribution. Due to the mis- 
match between the prevailing noise distribution (MAI + background 
noise) and the one assumed during optimization, the ROD detector 
requires about 1dB more A/u to achieve the same bit error rate 
than the previous three detectors. The noise seen by the second 
user (Fig. 2(b)) has a bimodal distribution due to the (stronger) 
signal of user 1, causing a mild near-far problem for the linear de- 
tector. The bit error rates of the MMSE. the single-user ML. and 
the ROD detectors are increased by approximately a factor of ten 
for AZ/CT = 6dB compared to those of user 1 for the same SNR. 
Note, that the ROD detector is near-far resilient and achieves es- 
sentially the same bit error rate as the optimal single-user detector. 

The good performance of the MMSE detector and the opti- 
mal single-user detector can, in general, not be retained if some 
of the system parameters change. To illustrate this. we add one 
more user (jammer), labeled by a 3 in Fig. I, whose parameters 
are unknown to any one of the employed detectors. The coeffi- 
cients of the above detectors are held fixed, i.e. a re-training time 
is not permitted which would enable the ROD detector and a blind 
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Figure 2: Users 1 and 2. 

version of the MMSE detector, for instance, to learn the jammers 
signature. Figures 3(a)-(b) show the detector performance in the 
presence of the jammer for user 1 and 2, respectively. The results 
are averaged over 250 randomly chosen signature sequences for 
the jammer. As expected, neither the optimal single-user detector 
nor the MMSE detector are robust to the advent of the new user. 
In fact, the decision of the MMSE detector is governed by the jam- 
mer due to a relatively high average cross-correlation between the 
jammers signature sequence and the coefficients of the MMSE de- 
tector. Both, the ROD detector (optimized prior to the advent of 
the new user) as well as the mid-range detector proof themselves 
robust to the arrival of the new user. The optimized ROD detector 
looses some performance over the mid-range detector in high SNR 
as the distribution of the MA1 has become multi-modal due to the 
advent of the jammer. Letting the weights adjust, it will, of course, 
regam a performance level that is higher than that of the mid-range 
detector. 

Summarizing, it was found that (1) the ROD detector pos- 
sesses the ability to mitigate the near-farproblem - this crucial im- 
provement over the conventional detector can be directly attributed 
to the fact that the order statistics are insensitive to scale, making 
the test statistic robust against power variations of the interfering 

Figure 3: User 1 and 2 (jammed). 

users, and (2) the ROD detector is less sensitive lo changes ofsys- 
tern parameters, such as the arrival or departure of a user, than the 
MMSE multiuser detector. This robustness is achieved by exploit- 
ing only the second moments of the order statistics of the noise as 
opposed to relying on detailed information about the noise statis- 
tics. 
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