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DISTORTIONS: A NON-EXPANSIONIST SOLUTION
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ABSTRACT

In this paper we introduce a novel and general matrix formula-
tion of classical signal extension methods for subband processing
of finite length signals. Considering a paraunitary 2-channel fil-
ter bank as transformation cell, this new characterization makes it
possible to show that perfect reconstruction of finite signals can be
ensured without resorting to extra subband samples; thus, by using
some traditional signal extension methods, non-expansionist trans-
forms can be defined. Some of these transformations are analyzed
to illustrate our theoretical results.

1. INTRODUCTION

It is well known that border distortions appear when reconstructing
finite length signals after being analyzed with any paraunitary FIR
filterbank. To remove this effect two different approaches have
been pointed out by different authors: (a) artificial expansion of
the finite signal before the analysis stage [1, 2, 7, 8]; (b) design of
border filters or wavelets on the interval [5, 4]. These may be mer-
ged into a single approach [6], since the first class of methods lead
to the construction of a special type of border filters. Despite these
advances on the study of the solutions to this undesired effect, we
have observed some unsolved questions:

1. The non-existence of a general formulation for all extension
methods; classical extensions such as zero padding, perio-
dic and symmetric extensions seem not to be related to each
other.

2. Exceptfor periodic extension and symmetric extension with
linear phase filters, all these extensions are expansionist,
that is, there are more coefficients in the transform domain
than samples in the original signal.

In this paper, we introduce a novel formulation that, in con-
tradiction to the result in [8], proves [3] that not every extension
lead to a non-expansionist transform; however, as we will show,
there exist some classical extensions that can be re-formulated as
non expansionist transforms. So, in addition to the introduction of
the formulation, we present the conditions over the transformation
matrix to guarantee that, after signal extension, expansion is not
necessary.

2. PRELIMINARIES AND NOTATION

Throughout this paper, vectors are denoted by lower case bold let-
ters (h) and matrices by upper case bold letters, fixing their size
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(H = H,,xm). The Nth order null and identity matrices are repre-
sented by O and I Nrespectively Letus consider a finite signal x
of even length N, x = [¢(0 ngl 1)]7. We define
a extension of x as x. = [x; ,Xx x ThlS extension is linear
if x; and x, depend linearly on x, that is, if there exist matrices
C;, C, such that x; = C;x and x, = C,x. If both x; and x,
have length M, the extended vector has length N + 2M and can
be expressed as x. = [ClT7 Iy, CTT]TX

In addition, we consider the paraunitary filter bank given by
the low pass filter h = [h(0), (1), -, h(L — 1)] (of even length
L > 2) and the associated high pass filter g = [—h(L—1), h(L —
2),- -+, —h(1), h(0)]. We build the matrix H,, , (;r4 L—2), Whose
m rows contain the filters, adding zeros when necessary. For the
sake of simplicity, we will write the H,, » (1.4 . —2) block Toeplitz
form [5, 6] as:

Ar Axg Ay 0 0
0 Ay A Ay 0 0
0 0 Ap A1 ... A

where 0 = 022, K = /2 — 1 and

A = h(2j +1) h(2j)
T =h(L—-25-2) h(L-25-1)
Wesetm = N + 2M — L 4+ 2 and define the transformation
Ye = H(niom—142)x(v4+20)Xe. This amounts to processing
X. by means of the analysis filter bank given by h and g, only
retaining the N + 2M — L. 4+ 2 central output samples. The whole
transformation of the original signal x can be expressed as y. =
Gx, where the transformation matrix is

C;
I

T

G = H(N+2M—L+2) x(N+2M)

Let us summarize some properties of the matrix

A
H=Huwom—r12)x(N420)-

It has orthonormal rows (not columns), so HH” = Inyom—ox #

HTH. Nevertheless, if H' is the matrix containing the N 4+2M —

4K central rows of H”, we can state that

H'H= [0(wt28s—ar) 2k INvomr—ar O(nyons—ar)xor]. (1)



We define ' = L/2 — 1 and p as the first even number such that
p> K:if Kiseven,p = K andif Kisodd,p = K + 1. Letus
finally split H,  (p4 1 —2) into three submatrices: Hy,y (py25) =
[Dpxx Epxp Fpxx]. D and F are, respectively, upper and
lower block-triangular matrices, and E is block Toeplitz. They will
be useful for describing any matrix H,, x (m4 £ —2) (if m > 2p) in
the following way:

DpXI\" prp FpXI\" OpX(N—p)
O(m—2p)xp  H(m—zp)x(mt2(k—-p)) Opm—zp)xp |- (2
0px(v—p) Dpxx Epxp Four

3. THE PERFECT RECONSTRUCTION PROBLEM

We are interested in finding which is the minimum number M of
extra samples such that we can recover the original signal x from
Ye = Hinjamr—ax) x(vt2m)Xe. If we left multiply y. by H'
and remind (1), we obtain H'y. = H'Hx. = xp, where xp
contains the N + 2M — 4K central components of x.. This means
that we can perfectly reconstruct at least the N +2M — 4K central
components of x.

Then, the first idea is to take M = 2, so that we can perfec-
tly reconstruct the whole vector x = xp. This leads to a length
N +4K extended signal x., which, after being analyzed, results in
a N+ 2K length vectory.. So we have to work with N+ 2K sub-
band samples, that is, we are dealing with an expansionist trans-
form. In other words, by applying a length /. 2-channel parauni-
tary filter bank to a finite signal, we would need to construct x.
by adding L — 2 extra samples per border to achieve perfect re-
construction. We will show that for many kinds of extensions, it
is possible to reduce this quantity to ' = L/2 — 1 extra samples
and, consequently, to work with non-expansionist transforms.

Let us take M = K and consider an arbitrary linear exten-
sion of x, x.. The transform vector y. = Hy (v42rx)Xe = GX
and x have the same length /V, so x can be perfectly reconstructed
from y. if and only if the square transformation matrix G is inver-
tible. Under this condition, the transformation is non-expansionist.
Matrices G representthe transformations of every linear extension
of a finite signal based on H y (v y21)- Next we find its general
expression.

If N > 2K, we denote x = [xaT x7 be]T, where x,, and x
contain, respectively, the first and last ' components of x, and x.
the remaining central ones. Let us also write C; = [C*CheCh?]
and C, = [C"*C"*C"?], where C"¢ C“*, C"¢ C"? are square
submatrices of A order. Left and right extensions can now be writ-
ten as x; = C'%x, + C"°x. + Ch®xp and x, = C"%x, +
Cx,. + C"bx,.

Now, using (2) for m = N, we perform the block product

Cl,a Cl,c Cl,b
Ix  Orxv—2r) Ox

G =Hyy(vt2r) | Ox In_2x 0x |;
0x  Owxxv-2rxy Ik
cne Cnre Cr,b

if K is even, whenever N > 3K, we obtain

DC"* + E DC"* +[F O y(n-2x)]
G= Hxy_oxyxn

Dcl,b
FCHe ]

FC™ + [0k y(v—3x) D] E+ FC™?

We will show that that invertibility of G is independent of
Ch° and C™°; so we can consider them as null matrices. In ot-
her words, we will assume that the left and right extensions of x.
depend on the initial and final portions of the original signal. In
this way, we get the simplest general expression of G, for all K
whenever N > 3K:

[DC"* 0,y (p—r)] + E F 05 (y—2r—p) DCH°
O _2p)x(p—r) H(v_2p)xn O(v_2pyx(p—r) [ (3)
FC™® 0,4 (v—2r—p) D E+4 [0, (p—r) FC]

G =

3.1. Classification of Linear Extensions of Finite Signals

In this section we will study all kinds of linear extensions with
their associate matrices G. We classify them in circular and non-
circular extensions. We say that a extension is non-circular when
the extra samples added at each border of the original signal de-
pend only on the K samples of the same border. That is, when
C"? and C™* are null matrices. The remaining ones are circular
extensions. Among non-circular extensions, we consider predic-
tive and non-predictive ones.

3.1.1. Predictive Non-circular Extensions

For this kind of extensions, extra samples are recursively defi-
ned as a fixed linear combination of the original signal. That is,
there exist linear prediction coefficients ¢, ¢z, . .., cx related to
Zq, and each new sample of «; is built from the K samples on
. . . . . K—7—1 .
its right through the combination: x;(j) = Zn; 1] enzi(3 +
n) + Zi:o Ccr—j4nTa(n), 7 =0,...,K - 1. In the.sa;ne
way, from z;, we define each sample of z, by linear prediction
over its left K samples, with coefficients ¢, czK_l), ...,cy: for
every j =0,..., K —1,

K—j5-—1

g—1
Z i _nwu(§ 4+ n) + Z c;_nxr(n).
n=0

n=0

vr(5) =

This is a linear extension since it can be easily shown that
x; = C¥x, andx, = C"™x,, where C and C' are the Frobenius
matrices:

c=| .. CK C' = O(I/\"—l)xl II\"—/I .
I]\"_l 0(](_1)><1 Crree e e Cq

Finally, we substitute in (3) and obtain the matrix G; associated to
the predictive linear extension; now we write it for even /' (hence
p=K):

DCK¥+E F O x(N—2F)
Hxy_oxyxn i
Opx(v—2ry D E+ FC'F

G =

To conclude this subsection we will analyze two interesting
examples of this kind of extensions: the classical zero padding
and polynomial extension.



3.1.2. Zero Padding

It consists of adding null samples at each border of signal x; that
is, x; and x, are null vectors. It can be considered as a predictive
extension whose prediction coefficients are all equal to zero. In
this case, C; = C, = 0,x xn and the associated transformation
matrix G contains only the N central columns of H y (v 425
It is also a block Toeplitz matrix; if K is even it adopts the follo-
wing expression:

AI\"/2 A-I\"/Q_l Ao 0 0 7]
Arpyn Axpe Agpor o0 Ao
Ax Ar_ . Ay
0 Agx
L o 0 Ag Axss |

and if K is odd, its Toeplitz blocks are mixed versions of these
ones. Let us finally remind that the main drawback of zero pad-
ding is the generation of artificial high frequencies in the transform
vector. A solution to this problem is to consider “smooth” exten-
sions such as that presented in the following section.

3.1.3. Polynomial Extension

Algebraic manipulations guarantee the existence and uniqueness
of adegree d < K polynomial that passes through the /' samples
of x.. Hence, we set x; as the values taken by this polynomial on
the /K points on the left of x; similarly, we construct X, from the
values of x;. Now x. is the polynomial extension of x. We can
see, using the theory of finite differences, that this is in fact another
example of linear predictive extension, whose coefficients are

o (_1)(J+1) (d-J|-1) i 1<j<d+1
T Tl o if d+2<j<K;

so we can write the transformation matrix associated to this exten-
sion as a particular case of G;.

Going back to the smoothness concept, we have to remind that
this depends on the number n of vanishing moments of h. In fact,
transform vectors of polynomials up to degree n — 1 do not present
high frequencies components: they are considered smooth func-
tions. Hence, after polynomial extension (of degree d < K — 1),
any signal will keep its smoothness whenever n > K. For ins-
tance, length I Daubechies filters have n = L/2 = K + 1 va-
nishing moments; this means that with these filters, polynomial
extension is always a smooth extension.

3.14. Non-predictive Non-circular Linear Extensions

As an outstanding example of infinite non-circular linear exten-
sions we must analyze the classical symmetric extension. In this
case X; = Pxx, and x, = P xxs, where P i is the permutation
matrix with 1’s on the antidiagonal. The transformation matrix
associated to symmetric extension is, for even ¥,

DPrx+E F Oxyv-2r)
G, = H(x_ar)xv
Orpxn—2ry D E+FPg

3.1.5. Circular Extensions

In this group we find all kind of extensions whenever C"® or C"?
are not null matrices. We consider two examples; the first one
leads to the famous periodic extension.

o Periodic extension: in this case we take x; = xp and X, =
Xq. Hence, C'* = C™* = Ix and CY* = C™® = 0.
The associated matrix Ger is, for any K:

E F O, n_2x—p D
O(n—2p)x(p—r) Hvozp)xnv  O(n—2p)x(p—K)
F 0,,wv—2x—p) D E

It is a block circulant orthogonal matrix, because its rows
contains the even shifts of the orthogonal filters. Hence, the
transformation is always invertible; however this extension
may lead again to artificial high frequencies.

o Smooth circular extension: If we desire the periodization
process not to introduce discontinuities in x., we can ex-
tend the signal before periodization in the following way:
we would like to define x,, x; so that the signal
[xf, xF, x7, xT]is smooth enough. From the last
samples of x; and the first ones of x,, we can construct it
through polynomial interpolation. And this is a linear pro-
cess which involves both x, and x; for each border, that is,
a circular linear extension. If we are not going to periodize
afterwards, it is better to apply the matrix G associated to
polynomial extension directly.

3.2. Invertibility of the Transformation

Considering the cases analyzed in the previous section, we can
only guarantee the invertibility of the orthogonal matrix associated
to periodic extension. Next we give necessary and sufficient condi-
tions for G to have an inverse. It is equivalent to be able to perfec-
tly reconstruct x from y. = Gx. We remind that left multiplying
y. by H', we obtain the N — 2K central samples of x, that is, X..
In order to determine x,, X, from G[x2, xI, xI]T = y., we
rearrange this linear system by moving the known vector x. to the
right side, and using (3) it becomes

DC" + Ex DC"®
S Xa — Opx(p—K) D+ 0pxrc Xa _ y/.
Xp Opxx *F 0y (p— 1) X
FC"* «E + FC™

In this new linear system we have denoted as A x (respectively *A)
the submatrix of A constructed from its first (respectively last) /'
columns. If K is even, then the asterisk may be omitted. Indepen-
dently of y’, the solution is unique if and only if the columns of
the system matrix S are linearly independent. In that case, multi-
plying by the pseudoinverse gives back x.,, X;. We have obtained
the following result:

Proposition 1 G has an inverse if and only if its submatrix S
has maximum rank (2K) .

Thus, we have given a characterization of regular matrices G.
Besides, this condition is independent of the extension matrices
Ch¢, €™, Moreover, under this assumption, we have described a
practical synthesis algorithm for x from y.. In our work, we have
also found other characterizations, for instance:

Proposition 2 G is regular if and only if there exists any solu-
tion X to the following matrix equation:



D Opx i

SX = 02p><I\" 02p><I\"
Opxx F
4. EXAMPLE

We have considered Daubechies filters of length 10, and have built
matrices G corresponding to the polynomial and periodic exten-
sion. Figure 1 shows the three subband of a cubic finite signal:
smooth polynomial extension (Figure 1(a)) presents the best per-
formance on the subbands; on the other hand, periodic extension
(Figure 1(b)) introduces discontinuities which create spurious fre-
quencies in every subband; this is important when studying the ef-
fects of quantization errors. Figure 2 shows reconstruction errors
for these signals after multiplying by the corresponding inverse
matrix , (b) and (d), or using the reconstruction algorithm propo-
sed in the previous section, (a) and (c). We have also tested Daube-
chies filters up to length 34: we conclude that such inverses exist
for all the types of extensions studied in this paper.
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Figure 1: Subband transforms of a cubic signal after: (a) polyno-
mial extension and (b) periodic extension.

5. CONCLUSIONS

‘We have introduced the general formulation of the subband proces-
sing of an extended finite length signal. New conditions for non-
expansionist invertible transforms have been given, and practical
examples were shown. Current research is being oriented to the
general demonstration of invertibility of each one of those trans-
forms regardless the filter bank, and the design of new subband
transforms of finite signals with improved properties. Further work
can also deal with the study of the effects of quantization errors on
the reconstruction of the finite signal.
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Figure 2: Signal reconstruction errors for the cubic finite signal
using: (a) polynomial extension and proposed reconstruction al-
gorithm; (b) polynomial extension and multiplication by inverse
matrix; (c) periodization and proposed reconstruction algorithm
and (d) periodization and multiplication by inverse matrix.
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