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ABSTRACT

This paper presents a filter structure which performs im-
plicit decimation of the impulse response. As a result, the
number of required operations is reduced or, equivalently,
the impulse response length of the filter can be increased.
Analysis in the frequency domain shows that this implicit
decimation can be applied to systems that exhibit low-pass
characteristics or have a smooth transfer function at high
frequencies. Such behaviour can be assumed for many tech-
nical systems. For the determination of the optimal coeffi-
cients many well known algorithms for FIR systems can
be used after a slight modification of the signal vector.
The performance of implicit decimation is demonstrated for
acoustic echo cancellation. Comparison with different algo-
rithms shows that implicit decimation outperforms conven-
tional FIR filtering.

1. INTRODUCTION

Digital signal processing techniques have a widespread use
in most telecommunication devices. Especially in consumer
products it is important to reduce cost, weight and power
consumption. Hence, most devices have to cope with lim-
ited processing power. However, for effective acoustic echo
cancellation, as it is well known, filter lengths of at least 150
to 200 taps are required, even at a quite moderate sampling
frequency of 8 kHz. Hence, those algorithms are attractive
which reduce the processing requirements or enable the use
of filters with longer memory.

One possibility is to use Quadrature Mirror Filter banks
(QMF), which split the signal in different frequency bands
and perform subsampling [1]. Due to subsampling, they can
operate with reduced filter lengths but require additional
analysis and synthesis filtering to perform decimation.

In this paper implicit decimation of the filter coefficients
is proposed. Because the resulting system operates in the
fullband i1t does not require analysis and synthesis filters
and hence, the complexity is further reduced. An analysis
of the implicit decimation shows to what kind of systems
this technique can be applied. The good performance is de-
monstrated in an acoustic echo compensation environment.

2. IMPLICIT DECIMATION

For convenience and simplicity, we illustrate below implicit
decimation (ID) with a subsampling factor of two and a

symmetric splitting of the impulse response length. Gener-
alization to higher order decimation, i.e. subsampling fac-
tors 4, 8, etc., and unsymmetrical splitting is straightfor-
ward.

In a number of system identification problems it can be
observed that for larger memory lags the difference between
neighbouring values of the impulse response is small. The
basic idea presented in this paper is the approximation by
combining two or more coefficients in order to reduce the
complexity of the modelling FIR filter.

In general, FIR filtering with coeflicients h[:] and filter
length N performs the operation
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Combining always two coefficients in the 2nd half of the
original FIR coefficients results in the approximation (with-
out loss of generality we assume that N is a multiple of 4)
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This may be written in vector form as

g[n] = hi"x1[n] + ha"x2[n], (1)
where
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The length of x1 and h; equals % whereas x» and hs are
only length % vectors. One observes that x2[n] loses its



shifting property if it is updated at every time instant n.
Updating x2[n] only at even n, i.e.

[x[n—%]+x[n—%—1]~~] n even

N[

xz[n] =
[x[n—%—l]—l—x[n—ﬁ—Z] ] n odd
(2)
one just has to calculate the most recent entry of x2[n], the
rest is shifted only. Additionally, this modified update has
the advantage that the convolution hszz[n] also has to be
performed only every other time instant. Thus, the average
number of multiplications per sample is

This compares to N multiplications for the conventional
FIR filter. The complexity is further reduced when the
number of decimated coefficients is increased or when higher
order decimation is used.

The determination of the ID coefficients is straightfor-
ward. Nearly all algorithms that are known for conventional
FIR systems can be used for ID systems. See Section 4 for
a more detailed description.

3. ANALYSIS IN THE FREQUENCY DOMAIN

As it has been shown in the previous Section, ID systems
allow a significant reduction in processing requirements by
approximating the true impulse response, but what does
this approximation mean in the frequency domain?

Fig.1 sketches the structure of 1D filtering according to
(1) with the update of x2[n] every other time instant ac-
cording to (2). wi[i] and w;[i] window the first and second
part of the impulse response, respectively, i.e.

. 1 for i=0,..., % -1
wilt] = { 0 else ’

. 1 for s=%,... N—-1
walt] = { 0 else. :

In the first part (I) of the decimation branch, non-causal
filtering with d[¢] performs the combination of two coeffi-

cients:
N-1

> dk] Ali — KJws[i — k] (3)
with )
. 0.5 for 21=-1,0
dli} = { 0 else.

Note that (3) contains % different undecimated coefficients
and only every other one is the true ID coefficient. Hence,
every other coefficient is picked in part (II) and part (III)
performs a one-sample hold.

With the modulation theorem of the z-Transform
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1— N2

] Mo | nl

Figure 1: Structure of ID filtering according to (1) and
(2): The sample vector x2[n] which corresponds to the dec-
imated coefficients is updated only every other time instant.
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the transform of the ID coefficients is given by
F[(Z) =H(z)@Wi(z)+ % (1 —1—2_1) X
[D(2)(H(2) @ Wa(2)) + D(=2)(H(—2) @ W2(2))]
where ® denotes cyclic cgnvolution.

To understand how H(z) differs from H(z) we inspect
FI(Z) at very low and very high frequencies. Since D(z) is
a low-pass filter it tends to 1 for very low frequencies and
D(—z) tends to 0. Hence, it is easily seen that

H(z)| =H(E)oWi(z)+H(z)oWa(z) = H(z). (1)

z—=1

On the other hand, for very high frequencies, i.e. z —
-1, (1+ z_l) tends to 0 and we get

H(z) = H(z) @ Wi(2) (5)

z——1

which corresponds to the windowed undecimated first part
of the coefficients. Windowing a time function in this way
results in a "smoothing” in the frequency domain.

Egs. (4) and (5) imply our conclusion that every system
with low-pass characteristics and/or a flat transfer function
at high frequencies may be approximated effectively by the
ID filter. Many real-world systems meet at least one of these
requirements. An example is shown in the next Section.

4. APPLICATION EXAMPLE: ACOUSTIC
ECHO CANCELLATION

To demonstrate the good performance of the ID filter, an
application example i1s analysed which arises in hands-free
telephony. The echo which originates from the acoustic
path from the loudspeaker to the microphone must be com-
pensated at the microphone output. The setup for acoustic
echo cancellation (AEC) is shown in Fig.2.

AEC was performed with a conventional FIR filter and
with the 1D filter described above. A 3rd order ID filter
was used with N; coefficients for the undecimated part, N»
coefficients for the decimation-by-2 part and N3 coefficients
for the decimation-by-4 path:

Xl[n] N
gln] = [h1” hz" hs" | [ XQ%n% ] =h"%[n]. (6



Figure 2: Setup for acoustic echo cancellation.

Hence, the effective filter length and the number of required
multiplications is, respectively,

Neff = N1 42Nz +4Ns

€

1 1
M=N —N: ~Ns.
1+2 2+4 3

As can be seen from (6) the operation of the ID filter
can be written in the same way as for conventional FIR
filters. Hence, nearly all algorithms known for FIR systems
can also be applied to ID systems, just by exchanging the
FIR signal vector x[n] by X[n] as indicated in Eq. (6).

The performance of FIR and ID filtering was compared
for Least Squares (LS) and Affine Projection (AP). The
test signal was the sentence ”Mein Name ist Bond, James
Bond”, Fig.5a, played and recorded at 8 kHz sampling fre-
quency in an office room.

4.1. Least Squares Algorithm

The optimal ID coefficients in a least squares sense are de-
termined in the same way as for FIR systems [2]:

h=0a"1

with

Fig.3 compares the Mean Squared Error (MSE) of the ID
and the FIR filter with different number of coefficients,
based on the same effective filter length and the same num-
ber of multiplications, respectively. The normalized MSE
is defined as

2. €[]

MSE = 10log =2*—— (dB).
%8 = ] (dB)
Note that for FIR systems the effective filter length equals
the number of multiplications. The total number N of 1D
coeflicients was generally divided according to

N1 ~ 0.4]\77 N2 ~ 0.4]\77 N3 ~ 0.2N

although this may not be the optimal choice for every V.
As can be seen in Fig.3, the performance of the 1D fil-
ter, based on the same effective filter length, is comparable
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Figure 3: MSE of FIR and 1D filters with different number
of coefficients. The solid line represents the conventional
FIR filter. The performance of ID is compared based on
same effective filter length (dotted line) and on the same
complexity (dashed line).

to the conventional FIR filter. This indicates the good ap-
proximation quality of 1D.

More importantly, for the same number of multiplica-
tions, i.e. for the same complexity, the ID filter clearly
outperforms the FIR filter. Note especially that for a given
complexity the performance of the ID filter is always better
than that of the corresponding FIR filter, regardless of the
specific complexity.

As expected, ID is particularly valuable if the processing
power is small compared to the required filter length for
efficient AEC.

Fig.4 compares the impulse response and the magnitude
of the transfer function of the FIR and ID filter, respec-
tively. For both systems the effective filter length equals
200 taps. It can be seen that the echo path does not ex-
hibit a clear low-pass characteristic although some energy is
concentrated below 500 Hz. It definitely has no smoothed
transfer function at high frequencies. Nevertheless, 1D fil-
tering performs quite well.

Generally, the ID filter provides nearly the same transfer
function at low frequencies and a smoothed version at high
frequencies as compared to the FIR filter. This correlates
with the theoretical results of Section 3.

4.2. Affine Projection Algorithm

In the second example, AEC is performed with an adaptive
algorithm which is more realistic for real-time processing.
The Affine Projection (AP) algorithm was first proposed
by Ozeki and Umeda [3]. In terms of complexity and per-
formance AP is placed between Recursive Least Squares
(RLS) and Normalized Least Mean Squares (NLMS). The

coeflicient update is performed according to

D1 = I+ uX[n] (X[n]"X[n] = 61) 7 e[n]
with

X[r]=[X[n]X[r—-1] - X[n— D +1]].

D, the dimension of the projection, was set to 3. u is the
step size and the regulation parameter § prevents the auto-
correlation matrix from becoming singular. e[n]is a D x 1
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Figure 4: Impulse response (a) and frequency response (b)
of the FIR and ID filter. They result from the LS algorithm
with an effective filter length of 200.

vector of present and past error values (see Fig.2). Note
that for D =1 and § = 0 AP is identical to NLMS.
A measure of performance for AEC is the Echo Return

Loss Enhancement (ERLE) which is calculated as

S -]
iL:—L €

ERLE,, = 10log (dB).

n—1

L. = 500 provides a good average of the current signal en-
ergy.

Fig.5a shows the loudspeaker signal which caused the
echo. The microphone signal was recorded and compen-
sated with the AP algorithm. In Fig.5b the ERLE of the
conventional FIR and ID implementation is compared.

Here, comparison is based on the same number of co-
efficients (N = 100 for FIR and N; = 55, N, = 45 for
ID). Again, it can clearly be seen that the ID implemen-
tation outperforms the conventional FIR implementation.
The reason is the larger effective filter length of the ID
system. Note especially that convergence speed does not
degrade in the ID implementation as compared to the con-
ventional FIR.

5. DISCUSSION

A new filter structure was proposed which performs implicit
decimation and hence, significantly reduces computational
requirements or enables the realisation of a larger impulse
response length. Because this new filter structure approx-
imates the true impulse response, it can be applied to cer-
tain types of systems only, including systems with low-pass

06 I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

seconds

®
20

i ——  FIR - AP algorithm|
ID — AP algorithm | |

ERLE in dB
— —
=) O

w

0 I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

seconds

Figure 5: Loudspeaker signal (a) and ERLE (b) for AEC
with the AP algorithm in FIR and ID implementation.
Both algorithms use the same number of coefficients.

characteristics or a smoothed transfer function at higher
frequencies.

The performance of the new filter structure was demon-
strated in an acoustic echo cancellation application. The
room impulse response, which must be modelled in order
to compensate its effect, fulfills the above mentioned re-
quirements in most of the cases. The examples show the
superiority of the proposed filter compared to conventional
FIR implementation.

The advantage of this structure increases further if an
algorithm is used with a complexity that is superlinear in
the filter length, e.g. RLS. The same is true at higher sam-
pling rates, even for algorithms with a linear complexity.
Increasing the sampling frequency by, e.g., the factor of
two results in an increase of complexity by the factor of
4 - twice the sampling rate and twice the filter length to
realize the same memory. This may be especially interest-
ing in wideband speech transmission at 16 kHz sampling
frequency.
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