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ABSTRACT 

A new technique for depth estimation in airborne laser 

bathymetry is proposed. The technique involves the trans- 
mission of a nonlinear frequency-modulated signal, the de- 

tection of the signal reflected by the ocean, and its pro- 

cessing using an appropriate matched filter. On the basis 
of this technique, a receiver can be constructed that of- 

fers improved resolution between the signals reflected by 

the surface and bottom of the ocean which translates into 

improved accuracy of depth measurement. 

1. INTRODUCTION 

Acoustic echo sounding has dominated the field of bathymetry 

in the past. This technology has improved through the 

years with the introduction of more accurate and reliable 

equipment. Sonar systems based on acoustic echo sounding 

methods require surface vessels to carry them and thus the 

speed of acquisition of bathymetric data is limited by the 

speed of the vessel. Moreover, the survey of coastal waters 

is difficult if not impossible because hydrographic survey 
ships cannot operate safely in shallow waters [l]. 

The accuracy and reliability of depth estimation can be 

improved through the use of a variety of signal processing 

techniques [4]. In this paper, improve depth estimation is 

achieved through the use of a new technique that involves 

the transmission of a nonlinear frequency-modulation (FM) 

signal, the detection of the signal reflected by the ocean, 

and its processing using a matched filter. The proposed 

technique can be used to construct a receiver that improves 

the resolution between the surface and bottom reflections 

which results in improved accuracy of depth estimation. 

2. RESOLUTION ENHANCEMENT 

Let us assume that the target region is irradiated by a trans- 

mitter that sends a time-dependent signal s(t). The leading 
edge of s(t) reaches the first target (ocean surface) and af- 

ter reflection it returns (or is echoed back) to the receiver 
Tl seconds later. The remaining portion of the signal trav- 

els towards the second target (ocean bottom) and is also 

reflected back. The receiver detects the sum of the echoes 

from all the reflectors from the target scene. The received 
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signal can be represented as 

m 

r(t) = xa,s(t - T,) + n(t), 0 < t < T (1) 
t=l 

where T, is the two-way round trip delay to the ith target 

and n(t) represents the noise present. In bathymetry, the 

signal-to-noise ratio (SNR) can be very poor and the prob- 

lem is to estimate the unknown delays TI , Tz, . . ., T, from 

the received waveform r(t). 

When the transmitted signal s(t) is a rectangular pulse 

of duration ~0, then its Fourier transform is a sine function 

with its first zero crossing at wo = 2~/ra. Hence the band- 

width of s(1), namely, wo, determines the range resolution. 

Clearly, when s(t) is a rectangular pulse, one cannot achieve 

long duration in the time domain and wide bandwidth in 

the frequency domain since wo is inversely proportional to 

the pulse duration ro. 

Evidently, the shape and type of the signal transmitted 

is important in this application, and we propose to use a 

special type of FM signal known as chirp signal. When 

processed by an appropriate matched filter at the receiver, 

a chirp signal has a remarkable energy localization property. 

The phase angle change in a chirp signal si (t) is a quadratic 

function of t, i.e., 

sl(t) = cos(wot + bt2), 0 < t < T. (‘4 

If we take the first derivative of the phase with respect to 

time, we get the instantaneous frequency as we + 2bt. Thus 

in a chirp signal, the instantaneous frequency varies linearly 

with time. 

Through this approach, an increase in ro results in a 

better signal-to-noise ratio at the output of the receiver. 

To see this, consider the baseband signal u(t) and let 

b(t) = a(t)CJpta, 0 < t < T (3) 

be the received signal. The duration of b(t) is the same as 

that of u(t) but its bandwidth is higher than that of u(t). 

Note that e-3”ta has a maximum instantaneous bandwidth 

of 2pT, and hence the bandwidth of b(t) is greater than 

2pT. Also since 

lb(t)1 = Ia(t)l > 



the energy in b(t) and u(t) are the same. 
Consider the receiver which comprises a matched filter. 

The output of the matched filter, g(t), can be obtained by 

using the convolution as 

s 

tw 
g(t) = b(t) * h(t) = b(r)h(t - r)dr 

--m 
t- 

= p’t2 

s 
a(r)e -32”trdT = A(2pt)eJPta (4) 

-co 

where A(w) represents the Fourier transform of u(t). Thus, 

the duration of the output pulse is given by 

width of g(t) = 
width of A(w) 

2P . 
(5) 

If the bandwidth of A(w) is approximately equal to l/T, 
then we obtain the classical result 

width of g(t) = &. 

Thus by choosing p large enough, the output pulse can be 

made as narrow as desired irrespective of the value of T. In 

effect, pulse compression by a factor y given by 

input pulse width T 

’ = output pulse width =l/aclT 
= 2pT2 = Aw . T (6) 

is achieved where Aw 2 2pT represents the instantaneous 

maximum bandwidth of the chirp signal e-jPta at time t = 

T. Note that the compression factor can be increased by 

increasing the value of p. 

3. NONLINEAR FM TECHNIQUE 

Interestingly, since the bandwidth of A(w) in (5) plays a 

crucial role in the attainable pulse compression factor y in 

(6), it is possible to reformulate (2) using a nonlinear FM 

technique. Towards this end, with u(t) representing the 
same baseband signal as before, let the received signal be 

c(t) fi a(t)e-jPt3, 0 < t < T. (7) 

As before, the duration and energy of c(t) are the same as 

those of u(t) but its maximum instantaneous bandwidth is 

greater than 3pT2. If the matched filter has an impulse 

response 

hl (t) = e--3pt3, (8) 

then the output of the matched filter, gl(t), is obtained as 

I 

tm 

!-71(t) = c(t) * hl (t) = c(r)hl (t - r)dr 
-co 

= e -3d 14 

s 

$00 

4r)e 
-334r-$)atdr, 

(9) 
--m 

If we define 

(10) 

we notice that the bandwidth of A,(w) is different from 

that of A(w). Using (lo), (9) simplifies to 

gl(t) = A3P(t)e-3Pt3’4. (11) 

Thus the output pulse width equals the width of AzP(t), 
and by selecting a(t) and p appropriately, it is possible to 

make the width of the output pulse as narrow as desired. 

As a result, by using a nonlinear FM signal, a higher pulse 

compression ratio can be realized, which would lead to im- 

proved energy localization. 

3.1. Super-Chirp Signal 

The FM signal 

s2(t) = cos(w,,t + bt2 + ct3), 0 < t < T (12) 

where b and c are appropriate constants, is a desirable 

choice in practice, and the quadratic variation of the instan- 

taneous frequency (the first derivative of the phase with re- 

spect to time) helps to strongly reject all other signals (and 

noise) at the output of the matched filter. We refer to 272(t) 
as a super-chirp signal. 

With b(t) representing the received signal, the desired 

receiver takes the matched filter. The output of the matched 

filter, g(t), is given by 

g(t) = b(t) * sz(T - t). (13) 

The output g(t) peaks at the unknown delays Tl , T2, . ., T, 
and due to the energy compactification property in sz(t), 
these peaks are quite dominant. Thus an increase in the 

pulse duration 70 can simultaneously increase the overall 

power and bandwidth of the transmitted pulse. Thus an in- 

creased SNR will be achieved at the output of the matched 

filter which will result in improved resolution between the 

surface and bottom returns and, in consequence, to im- 

proved depth estimation. 

3.2. Pulse Compression 

In this context, we will develop an alternative method for 

signal pulse compression on the basis of the principles de- 

scribed. Unlike the linear FM chirp signal, the nonlinear 

FM super-chirp signal has a higher-order phase term which 

is proportional to t”, in addition to a phase term which is 

proportional to t2. 
Let the nonlinear FM signal b(t) be 

b(t) = a(t)e-‘Ptz(‘-at), 0 5 t < T. (14) 

In such a case, the impulse response h(t) of the matched 

filter is of the form 

h(t) = e 3wt2(lt,t) 
(15) 

and its output g(t) is given by the convolution of b(t) and 

h(t), i.e., 

s 
$00 

g(t) = b(t) * h(t) = b(r)h(t - 7) dr. (16) --co 



From (14) and (15), b(t) and h(t) are the standard 

chirp signal and the corresponding impulse response of the 

matched filter, respectively, if cr = 0. However, if cr # 0, 

then the modulation technique becomes nonlinear. In such 

a case, (16) can be further simplified to 

J 

too 

g(t) = b(r)h(t - r) dr = e’pta(ltff”)Ap,,(t) (17) 
--m 

where 

J 

tm 

A,,,(t) 5 a(T)e 
-312~t7t3U~tr(t-7)ldr, 

(18) 
-ccl 

The integral in equation (18) cannot be evaluated in closed 

form. However, if a(r) is sufficiently smooth or of a constant 

value, then a simple approximate solution can be found. 

Let b represent the linear FM index and cr the nonlinear 

modulation index. Clearly, if (Y = 0, then 

g(t) = eJptZ J 
tm 

a(r)e -32ptr dr = e3’taA(2pt) (19) 
-co 

where A(w) represents the Fourier transform of a(t). It can 

be shown that the limit in (18) tends to approximate a delta 

function and, in the present context, the special form of the 

delta function 

lim 
1 -e3raly2 = qT) 

-i-o -f&T 

turns out to be useful. This representation of S(r) 

the relation 

as y + 0. With the help of equations (19) and 

cr + 00, equation (18) can be simplified further as 

(20) 

leads to 

(21) 

(W, as 

A,,,(t) = e-~Pt(3~a_+2)2 J tm 
a(T)e 33npt(T-y$)2 & 

-cc 

= e --3p 
tc3ut a a 

I,,’ ) Q(t) (22) 

where 

Q(t) & j-&” a(T)e33U+~)2 dr. 

To make use of the above approximation, let 

(23) 

and 

TO(t) = 
3crt+2 ?= (f++-). (25) 

Note that To(t) + t/2 as CY + 00. Using equations (24) - 
(25), Q(t) in (23) simplifies to 

J 
tm 

Q(t) = a(r)e(T-70)a/~a dr (26) 
--m 

and as y + 0 we obtain the result 

Qo(t) = .ti,mo Q(t) = &-dWo(t)l. (27) 

Therefore, the matched filter output for a nonlinear FM 

signal g(t) can be written as 

g(t) = lim e 3~ta(1tat)e-3~t(3utt2)2/12aQO(t) 

a-cu 

= lim fie 
3~ta(ltat)e-3~t(30tt2)2/12a 

~r(++0(w 
a-m 

(28) 

Equation (28) shows that the envelop of the matched filter 

output g(t) is given by y(t)a[ro(t)] if cx,ut + co. Since y(t) 
rapidly approaches zero in this case, excellent output pulse 

compression can be realized. 

3.3. Time-Bandwidth Relation 

For a chirp signal, if the linear modulation index p increases, 

then the matched filter linearly compresses the output sig- 
nal g(t) by a factor of 2,uT. However, the bandwidth of 

G(w) also increases linearly by a factor of 2pT. Therefore, 

the time-bandwidth relation of the output signal g(t) can 

be changed linearly by a factor of the linear modulation 

index ,u. 
Now let us examine the time-bandwidth relation of the 

matched filter output for the case of a nonlinear FM signal. 

From (28), the bandwidth of the matched filter output is 

predominantly determined by y(t). From (24), the width of 

y(t) depends on (Y, p, and t, and it decreases as (Y increases. 

Note that the maximum instantaneous bandwidth (BW) 

of a chirp signal eVJPt2 at t = T is given by 

BW ch,rp = -$t2 = 2pT. (29) 
t=T 

For a nonlinear FM signal, the maximum instantaneous 

bandwidth at t = T is given by 

BW = & pt2(1 + at)ItzT = 2pT(1 + F) 

= 2/ql + 17) = BWchrrp(l + 7)) (30) 

where 
a 3aT 

9=2. (31) 

Here, 7) represents the new bandwidth increment factor 

compared to that of the standard chirp signal. 

If a(t) is a rectangular pulse in the interval -T/2 2 t 5 
T/2, then 

-T/2 5 t < T/2, 
otherwise. 

The input signal b(t) is given by 

b(t) = a(t) cos[pt2(1 - at)] (33) 

and the impulse response of the matched filter h(t) assumes 

the form 

h(t) = cos[pt2(1 + cxt)]. (34) 



The output of the matched filter is given by the convolution 

b(t) * h(t), as before. Fig. 1 shows the matched filter output 

g(t) for p = 50, T = 1, and various values of (Y. If (Y = 0, 

from (19), g(t) is the output of the standard chirp signal 

(see Fig. l(a)). As (Y increases, g(t) depends only on the 

function y(t) (see Fig. l(d)). If (Y > 0, then g(t) becomes 

more compressed. And if (Y becomes sufficiently large, then 

the envelope of g(t) follows the function y(t). 

3.4. Signal Separation 

It would be interesting to address the issue of signal sepa- 

ration at this point. If the return signals are very close to 

each other, the matched filter may not separate the signals. 

Recall that for a rectangular input envelope, the width of 

the matched-filter output for a chirp signal is To = 1/(2pT) 
and if two signal components are separated by A < To then, 

for a given p, the standard chirp will not resolve these com- 

ponents. However, there is no problem if the proposed non- 

linear FM signal technique is used owing to the improved 

resolution of y(t). This is demonstrated in Fig. 2 where 

g(t) is plotted for various values of (Y for the case of two 

signal returns, one at Tl = 0.0 and the other at Tz = 0.05 
s. If (Y = 0, which corresponds to the case of a standard 
chirp signal, the matched filter does not separate the two 

signals. However, as (Y is increased, the two signals begin 

to separate for values of (Y greater than 1 or 2 and are well 

separated for values of (Y above 5 (see Fig. 2(c) and (d)). 

To conclude, we have developed a new technique for 

pulse compression based on a nonlinear frequency modula- 
tion. The technique entails a nonlinear modulation index 

(Y, which can be used to control the duration of the output 

pulse. The technique can be used to resolve several signal 

returns whose output pulse width is less than the width of 

the chirp pulse by simply selecting the appropriate value of 

(Y. 

By utilizing an FM pulse, we can achieve the frequency- 
spread characteristics of a short pulse within the envelope of 

a long duration signal. Thus by using a quadratic FM pulse 
with the frequency span set by the resolution required and 

with the duration set by the energy required for the range 

of depths to be measured, we can enhance the resolution 

between the surface and bottom returns of the blue-green 

laser signal thereby increasing the accuracy of depth mea- 

surement . 

Other applications of the proposed technique might in- 

clude detection and estimation of fish stocks and the mea- 

surement of sea-water turbidity and coastal pollution. 

4. CONCLUSIONS 

A new technique for the estimation of time delay for ocean 

depth measurement has been introduced. The technique 

involves the transmission of a chirp-like signal and the pro- 

cessing of the reflection by an appropriate matched filter. 

The proposed scheme improves the resolution between the 

blue-green surface and bottom returns thereby enhancing 

the accuracy of the depth measurement. Results obtained 

so far show that the technique works very well for return 

signals that are heavily corrupted with noise or noise-like 
clutter that can originate from any number of sources. 
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Figure 1: Comparison of matched filter output, g(t) (solid) 

and y(t) (dashed) for the various values of (Y (a = 

O,l, 5,lO). 
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Figure 2: Comparison of the matched filter output g(t) for 

the two signal returns (TI = 0.0, TZ = 0.05) for the various 
values of (Y (a = O,l, 5,lO). 


