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ABSTRACT

In this paper we address the problem of enhancing speech which
has been degraded by additive noise. As proposed by Ephraim
et al., autoregressive hidden Markov models (AR-HMM) for the
clean speech and an autoregressive Gaussian for the noise are used.
The filter applied to a given frame of noisy speechis estimated using
the noise model and the autoregressive Gaussian having the highest
a posterioriprobability given the decoded state sequence. The suc-
cess of this technique is highly dependent on accurate estimation
of the best state sequence. A new strategy combining the use of
cepstral-based HMMs, autoregressive HMMs, and a model combi-
nation technique, is proposed. The intelligibility of the enhanced
speech is indirectly assessed via speech recognition, by comparing
performance on noisy speech with compensated models to perfor-
mance on the enhanced speech with clean-speech models. The
results on enhanced speech are as good as our best results obtained
with noise compensated models.

INTRODUCTION

Speech enhancement has been investigated by many re-
searchers. However, most of the approaches use limited prior
information about speech. For example, spectral subtraction
techniques [7] can be applied to noisy speech in the same
manner as to any other noisy signal. Another example is the
CDCN algorithm [3] which can be seen as an enhancement
technique in the cepstral domain. It uses prior information
about the speech cepstra, contained in a codebook, to esti-
mate additive and convolutive noises and compensates for
them using the MMSE criterion. This kind of a priori in-
formation may not be sufficient to enhance speech without
reducing intelligibility.!

Using a Maximum A Posteriori (MAP) approach, Lim
and Oppenheim [9] proposed a time-varying autoregressive
Gaussian model to enhance the speech signal, where both
the model and the signal are directly estimated from the
noisy signal. The estimation is done iteratively, once over
the time-varying AR models assuming that the clean signal
is available (the first estimation of clean speech signal is the

In the CDCN case, the intelligibility is from the view point of speech
recognizer.

noisy speech signal) and once over the clean speech using the
estimated models and the AR noise model. This estimation
cannot really converge properly as the number of unknown
variables (AR models and clean speech) is large with respect
to the number of known variables (noisy speech). To solve
this problem, Ephraim et al. [6] proposed to use an AR-
HMM framework and to estimate the models from clean
speech training data rather than from the given noisy signal.

To find the mode of the a posteriori probability density
function (pdf) of the clean speech, Ephraim et al. used an it-
erative procedure based on the EM algorithm [6]. When the
initialization is inappropriate, this iterative procedure con-
verges towards a local maximum which can be far from the
optimal solution. This is often the case with very noisy
speech signals. Logan and Robinson [8] proposed a model
combination technique in the autoregressive HMM frame-
work to better initialize the iterative procedure. The initial-
ization is done by decoding the noisy speech frames with a
speech recognizer based on noise compensated AR-HMMs.
However, it is well known that cepstral-based HMM recog-
nizers are more efficient at decoding speech than AR-HMMs
especially for large vocabulary applications. Here we extend
this latter approach using a cepstral-based HMM recognizer
for initialization. We use two sets of acoustic models in-
stead of one: the first one is a cepstral-based HMM (with
Acepstrum and A’cepstrum) which is used to find a bet-
ter initialization for the iterative process; the second model
is an autoregressive one and is used to estimate the opti-
mal time-varying filters. Estimation of the clean speech
is obtained by applying this time-varying filter to succes-
sive frames of the noisy speech signal. For a given noisy
frame, we first find the cepstral Gaussian with the highest
a posteriori probability by decoding the speech with the
compensated cepstral-based models. This decoding gives
a frame/cepstral-Gaussian alignment, where each Gaussian
in the cepstral-based HMM corresponds to an autoregres-
sive Gaussian in the AR-HMM. The optimal filter is then
estimated using this autoregressive Gaussian and the noise
autoregressive Gaussian. The cepstral-based HMMs and the
AR-HMMs are trained in such a way that there is a one-to-



one mapping between the two sets of models at the Gaussian
level. To do so, we first estimate the cepstral-based HMM,
and then we use the statistics of the last iteration to estimate
the AR-HMM parameters.

The following sections describe the implementation of this
approach for speech enhancement. Experimental results with
different noises are given to demonstrate the improvement
of speech quality and speech recognition performance with
enhanced speech is measured.

ENHANCEMENT PROCESS

Let us first consider the case of an observation generated
by a single Gaussian. Let y be a noisy frame (y € RX)
and f,, be the pdf of the clean frame x corresponding to
the noisy frame y. Assuming that x is generated by an
autoregressive process, its pdf fi (x) is defined as
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where Sx is the autocorrelation matrix: Sx =
0% (AxAx)~!, for which % is the variance of the inno-
vation process of the AR source, and Ax is a K x K lower
triangular Toeplitz matrix in which the first p+ 1 elements of
the first column constitute the coefficient of the AR process:
a;,0<i<p where ap = 1.

Similarly, let f,,, be the pdf of the additive noise which
is also assumed to be an autoregressive Gaussian. The en-
hancement problem consists of estimating the clean frame x
using fay s fi;, and y. The MAP estimation X is defined as
follows:

% = argmax log{h(x, y)} (2)

where h(x,y) is the joint pdf of x and y. Since the noise is
additive and independent of the signal, we have:

h(x,y) = Hix(X) fon (¥ —%). (3)

This maximization leads to the Wiener filter. The Fourier
transform of the estimated clean frame is calculated as:
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where Y'(#) is the Fourier transform of the noisy speech
frame, and I'x (@) and I'y (¢) are the power spectral densities
associated with the two AR processes. The spectral densities
are obtained as follows:
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where Wx(6) and Wn(f) are the Fourier transforms of the
prediction coefficients for the clean speech and for the noise
respectively.

Considering the more general case of an AR-HMM pro-
cess, let y = Yt,tzl,...,T/Yt € RF be a sequence of noisy
frames corresponding to a noisy sentence (7' is the num-
ber of frames in the sentence). The MAP estimate of the
clean speech frames is obtained iteratively using the EM
algorithm. At each iteration %, the Fourier transform X tk,
{t = 1,..., T} of the estimated clean frame %X;(k), is ob-
tained from the noisy frame as follows:
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where, p;(5, y|X(k)) is the probability of being in Gaussian
v of state § at time ¢, given that %(k) is generated by the
AR-HMM, and H. ;5 is the Wiener filter associated with the
autoregressive Gaussian v of state § and the autoregressive
Gaussian of the noise (Equation 4).

The success of this procedure for enhancing the noisy
speech signal is highly dependent on the estimation of the
a posteriori probabilities p; (7, v|%(k)). These probabili-
ties are estimated using the “backward-forward” procedure.
If these probabilities are estimated using acoustic models
trained on clean speech data, the iterative process is likely to
converge towards suboptimal solution, especially when the
signal-to-noise ratio (SNR) of the noisy signal is low. To
have a better estimate of these probabilities, we decode the
noisy speech signal y using acoustic models which were ob-
tained by adapting clean cepstral HMMs with the test noise,
i.e. using the best available noisy speech model.

Since no prior knowledge of the background noise char-
acteristics is available, model compensation has to be per-
formed using only the test data. The compensated mod-
els are obtained by adapting the models trained on clean
speech. Various techniques have been proposed to com-
bine a clean speech model with a noise model, including
log-normal approximation, numerical integration, and data
driven approaches[2]. In this work we use a data-driven
model combination (DDMC) approach, where the usual ap-
proximations are avoided by directly using the original train-
ing speech samples instead of generating speech samples
from the models[1, 5]. This approach is computationally
inexpensive in comparison to other proposed approaches,
even though it requires reading all of the training data form
disk. We assume that the Gaussian posteriori probabilities
for a given training frame remain unchanged after adding
the test noise. The basic steps of the enhancement process
are shown in Figure 1. The two main components are the
initialization using cepstral-based HMM with DDMC and
AR-HMM state-dependent filtering.
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Figure 1: Speech enhancement using the AR-HMM state-
dependent filtering. Cepstral-based HUM and model combination
are used for initialization.

EXPERIMENTAL RESULTS

To evaluate this technique, we used 22,148 utterances from
the MASK? corpus[4] from a total of 460 speakers. Data from
450 speakers were used for training and data from 10 speakers
were kept aside for test. This data was collected using a
close-talking microphone with an average SNR of 35dB.
The speech signal is bandlimited to 8kHz and sampled at
16 kHz. The recognizer is speaker-independent and capable
of recognizing continuously spoken spontaneous speech in
real-time with a recognition vocabulary of 1500 words and a
bigram language model.

For both cepstral and AR-HMMs we used a 30ms frame
window (480 samples) and an 10ms frame rate. For the cep-
stral HMM, the feature vector is composed of 13 MFCC and
their first and second derivatives. Cepstral mean removal is
performed for each sentence. The order of the AR Gaussians
has been fixed to 16 (for the clean speech AR-HMMs and
for the noise model). We use 608 context-dependent phone
models. Each phone model is a left-to-right CDHMM with
Gaussian mixture observation densities typically having 20
components.

The speech enhancement algorithm has been applied to
speech signals degraded with additive noise. In this paper
we present results using three types of noise taken from the
NOISEX-92 database [10]: white noise, Lynx noise and
F16 jet noise. Synthesis of the enhanced signal from the
individually processed frames was done using the standard
overlap-add technique with a Hanning window.

2The MASK spoken language system provides access to train travel
information.
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Figure 2: Spectrogram of clean speech: “quel est le type du train
qui arrive a 20 heures 25.”
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Figure 3: Noisy speech (SNR=5.7dB) generated by adding F16 Jet
noise to the signal in Figure 2.
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Figure 4: Enhanced version of noisy speech in Figure 3 using
AR-HMM state-dependent Wiener filters.
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Figure 5: Noisy speech (SNR=1dB) generated by adding white
noise to the signal in Figure 2.
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Figure 6: Enhanced version of noisy speech in Figure 5 using
AR-HMM state-dependent Wiener filters.



A spectrogram of an original clean speech signal is shown
in Figure 2. Noisy versions obtained by adding F16 jet
noise and white noise are shown in Figures 3 and 5 respec-
tively, with the enhanced signals obtained by Wiener filtering
shown in Figures 4 and 6 respectively. Visually a significant
decrease in noise can be seen. Listening to the enhanced
signal we hear only a slight distortion and no musical noise.
Although not illustrated here, enhancement of noisy speech
generated by adding Lynx noise was less effective, because
the energy of Lynx noise is concentrated in low frequency
band, causing more loss of speech information.

Recognition with enhanced speech

In this section we describe experiments which indirectly
assess the intelligibility of the enhanced signal via speech
recognition. The performance of the recognizer on noisy
speech with matched models is compared its performance
on the enhanced speech with clean-speech models. Experi-
ments have been carried out with test signals degraded by 3
types of additive noise: white noise, F16 jet noise and Lynx
noise. The word error rates for the different configurations
are shown in Table 1. Besides the Wiener filter given by
equation 4 (filter 1), we have also used the square root of the
Wiener filter (filter 2).

Word error rates (%) |

| Test configuration F16 | Lynx | White|
Clean test data 5.9 5.9 5.9
Noisy test data 554 | 60.7 | 799

Compensation (DDMC) | 136 | 214 | 152
Enhancement (filter 1) 139 | 21.7 | 152
Enhancement (filter 2) 122 | 203 | 145
Table 1 Average word error rates for different test configurations.
Column 1 corresponds to F16 jet noise (SNR=64dB), column 2 to
Lynx noise with (SNR=5.5dB) and column 3 to white noise (1dB).

Table 1 shows that the speech recognizer performance de-
teriorates significantly when the system is trained on clean
data and tested on noisy data. For example, training on clean
speech and testing on noisy speech (SNR=1dB) generated by
adding white noise, the word error rate increases from 5.9%
(testing on clean speech) to 79.9%. Compensation for the
test noise using DDMC significantly decreased the word error
rates (compare rows 2 and 3). Using acoustic models trained
on clean speech and the enhanced speech signal gives word
error rates similar to those obtained with model combination.
Testing with the enhanced speech based on filter 2, gives rel-
ative improvements of 4.6% for white noise, 10.3% for F16
jet noise and 5.1% for Lynx noise, compared to the results
obtained using model combination. These results indicate
that for the speech recognizer there is no decrease in intelli-
gibility of the enhanced speech relative to the noisy speech.

As can be predicted theoretically, the performance obtained
by training and testing under matched training/testing condi-
tions or enhancing the speech signal should be comparable
when the same underlying speech models are used.

CONCLUSION

In this paper we have experimented with a MAP approach
using autoregressive HMMs to enhance speech signal de-
graded by additive noise. This technique introduced by
Ephraim et al. [6] requires a reasonable initialization of the
EM estimation procedure. Here we have described a new
initialization technique relying on the use of cepstral-based
HMMs and a data-driven model combination technique [5].
This initialization process makes this speech enhancement
technique effective in enhancing noisy speech even with very
low SNR. Experiments were carried out using three types of
noise taken from the NOISEX-92 database. We found the
enhanced speech to be perceptively quite good, with only a
slight distortion and no musical noise, although no formal
perceptive tests were carried out. Speech recognition ex-
periments with the enhanced speech show that there is no
decrease of intelligibility from the viewpoint of the recog-
nizer.
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