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ABSTRACT

In this work, we develop an equivalent filter bank struc-
ture for the computation of the fractional Fourier trans-
form (FrFT). The purpose of this work is to provide an
unified approach to the computation of the FrFT via
the filter bank approach.

1. INTRODUCTION

The concepts of Fourier analysis and synthesis are fun-
damental for signal processing. Recently, the fractional
Fourier transform, a generalization of the Fourier trans-
form with a transform parameter arises many applica-
tions such as phase retrieval, signal detection, radar,
tomography, and data compression [1]. And it is known
as one of the most important tools for time-varying or
nonstationary signal processing [2].

The fractional Fourier transform was implemented
by the optical system, see [3]. There are also several
numerical algorithms for computation of the contin-
uous fractional Fourier transform (CFFT), especially
elegantly developed by Ozaktas et al. in [1]. We show
all these algorithms can be implemented by a multirate
filter bank system.

There are several discrete forms of the fractional
Fourier transform, for example, [1] provided an algo-
rithm for the computation of the discrete transforma-
tion by sampling the fractional Fourier-transformed sig-
nal. This approach is similar to the derivation of the
discrete Fourier transform (DFT). The second approach
proposed in [4], considered the discrete rotation Fourier
transform (DRFT) as an operator from C¥ to CM.
And the DRFT of a finite signal can be easily com-
puted directly. In this work we show the equivalent
structure to the traditional filter bank structure.

From the two sections, we have the similar structure
to implement the computation of the fractional Fourier
transform, we define two structures for further study of
this approach.

The multirate filter bank system to implement the
CFFT from M samples in time domain to M samples
in the ath domain is introduced in section 2. In sec-
tion 3, we first review the definition of the DRFT, and
introduce the DRFT via fast Fourier transform (FFT)
directly, and then we derive the DRFT of a periodic
signal and its equivalent filter bank representation. We
develop a similar structure for these implementations,
both for CFFT and DRFT in section 4. In section 5,
we have a simple comparison with the FFT-based ap-
proach and the proposed approach. We conclude and
introduce further development in section 6.

2. THE CONTINUOUS FRACTIONAL FOURIER
TRANSFORM

Recall that the CFFT of a function z(t) is defined as
(1]
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where B, (u,t) = Agexp(jm[u? cot ¢ — 2ut csc ¢ +
2 cot ¢]) with Ag = [sin ¢|7% e~ imsgn(sin ¢)/d+i¢/2) 419
¢ = 4F. Further, By(u,t) = §(u —t) and Bio(u,t) =
S(u+t).

For a signal with compact Wigner distribution, sup-
pose there are M samples with sample period At, we
can evaluate (1) with the digital signal processing tech-
nique without employing the direct numerical integra-
tion. The following two algorithms [1] allows us to ob-
tain the samples of the ath transform domain in terms
of the original function.

2.1. Method 1:

The direct computation of multiply by a chirp convo-
lution followed by another chirp multiplication. The
CFFT for z(t) can be represented by
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where g(u) = e 97 tan £ (y).

The CFFT is computed by the following
Frx (3)
DAH,AJ = DH®J (4)
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where D and J are matrices representing the decima-
A is a diago-
nal matrix that corresponds to the chirp multiplication,
and I, corresponds to the convolution operation. Now

tion and the interpolation operations.

we define
H"(2) = AH;,A (5)

which is viewed as the polyphase matrix of the system.
This operation can be easily implemented in the filter
bank structure [5][6] shown in Fig. 1.

2.2, Method 2:

The CFFT can also be expressed as
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By sampling theorem, the integral is now calculated by
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and F' is the DFT matrix for |m| and |n| < N. Now
the polyphase matrix

s | Ka, 0.5<|al<1.5,
H(2) = { KaF, 05<la—1<15 &

will be used to implement (7). The two algorithms
can be essentially the well-known multirate filter bank
structure, therefore, the samples of the fractional Fourier
transform can be easily obtained by the filter bank
structure shown in Fig. 1.

2.3. The CFFT filter bank

The computation of the CFFT of a signal can be ob-
tained via the similar multirate filter bank (see Fig.
1) with polyphase transfer matrix (5) and (8), respec-
tively.

3. THE DISCRETE FRACTIONAL FOURIER
TRANSFORM

There are two main approaches to implement the dis-
crete fractional Fourier transform (DRFT).

3.1. The CFFT approach:

This approach was proposed by [1] and described in the
preceding section. For the rest of this work, we discuss
the alternative method.

3.2. The functional power of the DFT matrix:

In [7][4], the DRFT of a signal is defined by taking
the ath power of the DFT matrix. The operator is a
suitable candidate for the computation of the DRFT.
Before any more suitable approach appears, we present
this approach and show that the filter bank structure
can also implement this work. In [4], the M-point
DRFT of a sequence of signal {x(n)}i\il is defined as

M-1
z%(m) = Z Ko(m,n)z(n), m=0,1,2,... M —1
n=0
(9)
or in vector form
x*=K.x, O0<a<2rm (10)

where x® = (22(0),2%(1),...,2%(M — 1)) and x =
(z(0),z(1),...,2(M —1))T. The above form can be seen
as a block version of the scalar sequences {x(n)} !
and {z(n)}M !, respectively.

The a-DRF'T kernel K, is a polyphase matrix with
entries

Ko(m,n) = ao(@)b[(m —n)u] + az(@)b[(m +n) ]
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ag(a) = 5(—14—6]0‘) cos o, az(a) = 5(—1—j670‘) sin c.

3.3. The implementation of DRFT via FFT

According to (11), we need to define the time reversal
operator W(z(n)y) =z((—n) ). In fact,

W =w?
. . . . — &L nk
where W is the DFT matrix with entries Wy, = £ TN

for 0 < n,k < N — 1. The DRFT operator with para-
meter « defined in (11) can be written as

Koz = ao(a)z(n) + az(a) + z(—n)

Far(@) X(n) +as(a)X(—n)  (12)

This means that the DRFT of z(n) is the linear
combination of z(n)and z(—n)as well as the DFT of



z(n) and z(—n), respectively. With suitable arrange-
ment, the DRFT of z(n) can be computed by an ef-
ficient method via FFT. However, with the advantage
of computation efficiency, this approach is lacking in a
view of system science. The direct implementation of
this approach is shown in Fig. 2.

3.4. The DRFT filter bank

Suppose there are M samples in one period of a pe-
riodic signal z(t), denoted by {x(n)}i\iz)l We gener-
ate the vector (so(n),s1(n), -+, sp—1(n))? by passing
z(n) through a serial to parallel mechanism, so that

8i(n) = z(n —¢). From (9), we have

X (2) = iSi(z)Ka(m,i)
= - K,(m,i)2 ' X(2)

where X(2) is the z-transform of z(n). Then we can
write

Xi(2) = Hi (2)X(2)
where HZ(2) = M0 Ko (m, i)z

Remark: The M-point DRFT operator is periodic
in both time and frequency, that is,

Ky(n,k) = Kuoln+ M,k)
= K,(n,k+M)
= Ko(n+M,k+ M)

Hence, the DRF'T of a periodic signal is also peri-
odic.

4. THE POLYPHASE REPRESENTATION OF
FRFT OPERATOR

It is well known that the structure shown in Fig. 3 is
equivalent to the polyphase structure which appears in
the theory of filter bank frequently. For convenience,
we define two types of structures to implement the
FrFT filter bank. The first one is the type 1 FrFT
filter bank with the associated filter bank (see Fig. 4)

M-1 M-1
Hy(2)= > 2 'Hy(z) = > 2 Ko(k,0),
=0 =0

for 0 <k < M — 1, or in the vector equivalent form

Ho(Z) 1

Hy(2) . 271 .

= H"(2) =: H%(2)e(z)
Hy—1(2) Z~ (M-1)

where H*(2) is known as a polyphase matrix. The
second is the type 2 FrFT filter bank(see Fig. 5)

M—1
Hp(2) =) = M OHR (M)
1=0

for0<k<M-—1,o0r
[ Hy(2) HP(2) Hyy 4 (2) ]
_ [Z%an,szfzx...@] HO(2).

Evidently the equivalent representation of the two
types of filter banks is an M-input M-output (MIMO)
linear time-invariant(LTI) system. More precisely, this
MIMO system can be characterized by an M x M
transfer matrix H*(2) = [K,(m,n)]Jo<m n<m—1. The
"blocking mechanism” (see Fig. 3) for type 1 polyphase
matrix can be considered to be a serial to parallel con-
verter of data. Similarly, the ”unblocking mechanism”
used in the type 2 polyphase transform is a parallel to
serial converter.

5. PERFORMANCE COMPARISON

The appearance of large-scale integrated circuits has re-
duced the emphasis on minimizing the number of multi-
plications and is causing the considered structure using
many parallel devices rather than a few high-speed de-
vices. The computation of the FFT-based algorithms is
about O(N log N) for a sample of number N. However,
there are N multiplications and N additions in each
filter. With increasing IV, the filter bank structure can
have a large amount of computation saving with the
expense of hardware.

6. CONCLUSION

We have presented an equivalent filter bank structure
which implements the fractional Fourier transform. With
this approach, we can unify the implementation via the
equivalent filter bank system. This filter bank structure
can also be used to process the short time fractional
Fourier transform. This framework not only provides
a novel approach to compute the FrFT of a given func-
tion, but also reveal a new generalization of the con-
ventional DFT filter bank for digital signal processing,.



It is known that over different angles (i.e. @) the signal
energy is squeezed into different frequencies, hence we
can find applications of the FrFT operation as well as
the filter bank.
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Fig. 1 The polyphase representation to implement
the CFFT.
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Fig. 2 The direct implementation of the DRFT via

FFT.
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Fig. 3 The direct implementation of the DRFT.
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Fig. 4 The type 1 implementation of the DRFT bank.
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Fig. 5 The type 2 implementation of DRFT bank.




