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Abstract N-l 

A recursive algorithm for computation of both forward and 
backward DPT has been proposed where the common entries in 
the decomposed matrices are factored out in order to reduce the 
number of multipliers needed during implementation. The 
derived algorithm is essentially the band-matrix-vector 
multiplication with matrix bandwidth of 3. By exploiting the 
heterogeneous dependency graphs for the matrix-vector 
multiplication and using an efficient mapping technique, only 
log,N adders and fog+I multipliers are needed to compute the 
DFT of size N, a great saving from a recently proposed systolic 
architecture which calls for 3log,N adders and 3logjV multipliers. 
Furthermore, due to the simplicity and regularity of the 
architectures, it is possible to design a low power processor by 
turning off the hardware components of no operation at proper 
time steps. VLSI implementation of the DFDIDFT processor 
with distributed FSM for timing control is also presented. 

The definition of order-N DFT yk(N,x)= 2 .mxW,$“, 
n=O 

WN =exp(-j$) for a given input complex data sequence 

(xn:n =[O,N- I]) and the output complex data sequence 

(yk : k =[O,N - I]) could be expressed as the matrix-vector 

multiplication y = E(N) x where E(N) denotes the coefficient 
matrix of N-pt. DFT. 

Splitting the time index n into two equal intervals, one with 
index n’:[O,N/2-I] and the other with index n”=n’+N/2, and 

splitting the frequency index k into two equal intervals according 
to the even and odd partitioning, we obtain the relationship 
among the four N&pt. DFTs as shown in Tab. 1 where E(N/2) 

I denotes the N&pt. DPT. 

1. Introduction 
Discrete Fourier transform (DFT) has been one of the 
fundamental operations in DSP. Since the famous fast Fourier 
transform (FFT) algorithm by Cooley and Tukey, there have been 
a lot of papers on the fast implementation of DFT in order to 
achieve real-time processing speed [2]. As VLSI technology 
advances, new criteria of designing and evaluating the fast 
algorithms emphasize on regularity, modularity, and locality in 
the architecture realization. In this case, systolic arrays [3] 
become popular for VLSI implementation since they satisfy the 
above architecture requirement. However, most papers present 
systolic architectures with hardware complexity proportional to 
the transform length N, which is impractical for VLSI 
implementation of long-length transforms due to the high 
hardware cost. Recently, Boriokoff [I] proposed a new systolic 
DFT architecture which requires only 3log,N complex adders and 
multipliers. The basic idea is to decompose the transform 
coefficient matrix into product of simpler band matrices with 
only a number of regularly spaced nonzero diagonals, and to 
implement the resultant band-matrix-vector multiplication by 
efficient systolic arrays. 

n = Ii, 
n’=[O,N/2-I] 

n=n’=n’+NI2 

k = 2i, 
i=[O,N/2-I] 

E(N 12) E(N 12) 

k =2i+l E(N12) Wj;:” - E(N12) W;;:’ 

Tab. 1: The relationship between the four Na-pt. DFTs after the 
index partitioning. 

Writing Tab. 1 in the matrix form, we have 

Y= [I[ E(N12) E(NI2) XP 
YC’ = E(N/2)C(N/2) 11 -E(N/2)C(N/2) XT ’ 

In this paper, the number of complex multipliers in 
Boriakoff s systolic DFT architecture is further reduced to only 
log,N-l by exploiting the features of the entries in the 
decomposed coefficient matrices. A hardware-efficient linear 
systolic architecture based on the algorithms is generated based 
on the mapping of the corresponding hererogeneous dependency 
graphs (DGs). The new architecture has very regular structure 
and simple control and thus is easily scalable and pipelinable. 
Furthermore, due to the regularity of the multiplied coefficients, 
it is easy to reduce the power consumption of the Dm processor 
by turning off the temporarily unused multipliers. VLSI 
implementation of an 8-pt. DFT processor is presented which 
consists of the related coefficient ROMs and the distributed finite 
state machine (FSM) for the control unit. 

where xp is the preceding half of the input data; X, is the rear half 
of the input data; yc is the even-numbered transformed data; y0 is 

the odd-numbered transformed data; C( N/2) = diq(W;‘;$) is an 

(N/2)x(N12) diagonal matrix. Repeating the above partition for 

the DFT of progressively smaller size, the frequency index will 
be eventually in bit-reverse order while the time index is still in 
the normal order. Let R(N) denote the permutation matrix for 

the bit-reverse operation of an N-pt. vector and let j = R(N) y be 

the bit-reversed output vector of size N. Eqn. (I) becomes 

@‘O 

2. Recursive Formula for DFT 

(1) 

1 

(2) 



where R(N/2) is the permutation matrix for the bit-reversed 

operation of N/Z data samples. &N12)=R(N12)E(N12) is 

generated by rearranging the rows of E(N12) in bit-reversed 

order. I(N/2) is the (N/2)x(N/2) identity matrix. 

B2(N)=BDp(N)BB2(N) is the butterfly operation matrix and 

can be split into a diagonal matrix m2(N) and a band matrix 

BB2(N) consisting of only three nonzero diagonals. Eqn. (2) is 

in fact the general decimation-in-frequency (DIF) recursive 
formula for order-N DFI [5]. In the next section, we will show 
how to realize the butterfly operation LIZ(N) using an efficient 
linear systolic array containing only one multiplier and one adder. 

SinceDFT(N) is symmetric and the inverse of the 

permutation matrix R-'(N) = RT(N) is equal to its transpose, the 

decimation-in-time (DIT) DFT algorithm could be simply 
obtained from the DIF algorithm. Indeed, 

j=&N)x =,R(N)j=R(N)&N)RT(N)R(N)x =$ 

y=~(~)~T(~)i=~T(~)~T(~)i=(~(N)~(~))Ti=iT(~)i 

Thus the recursive algorithm for the order-N DIT DFT can be 
expressed as 

y= iT(N/2) 

[ 

C(N/2) iT(N/2) 

k?(N/2) -C(NI2) kT(N/2) I 

; 

[ 

I(Nl2) I(N12) I(N12) 

jL II 

.iT(N/2) 

= I(N12) -[(N/Z) C(N12) iT(N/2) 1 i (3) 

B:(N) 

= By iTWW 
2 

[ 1 bT(N/2) 
i 

Note the difference of the post-multiplication in B2(N) for the 

DIF DFT and the pre-multiplication in B;(N) for the DIT DFT. 

Using the same index partition method as in the forward DFI’, 
we could obtain general recursive formula for inverse DFT (IDFT) 
in DIT or DIF form. The butterfly matrix of the DIT IDFT is 

IB 2 ( N ) = B; t ( N ) while the butterfly matrix for the DIF IDFT 

is [B:(N) = BiT(N) . 

We observe that the recursive algorithm for the DIF DFT 
and that for the DIT IDFT lead to the same architecture with 
different post-multiplication coefficients in the butterfly matrices. 
Thus, we can merge the DIF forward DFT and the DIT backward 
DFT into the same architecture by changing multiplication 

coefficients in ED2 and BD;’ . In fact, as will be seen in Sec. 4, 

we don’t need to prepare two different coefficient ROMs (for the 
input operand of the multipliers) for both the forward and 
backward DFTs. Instead, both DFT and IDFI can share the same 
coefficient ROMs. 

3. New DFT Architecture 

We would consider a special case for N=8 and then extend to the 
order-N DFT architecture. According to Eqn. (2), we could obtain 

r&(2) 1 
ji= 

82(2) 

E2(2) 

B2(2) stage 2 

stage 3 

where three stages of butterfly operations are 
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Each butterfly operation could be divided into one diagonal 
matrix and a 3-band matrix. The multiplication of a diagonal 
matrix can be realized by a single multiplier. Thus, we focus on 
the structural implementation of the band-matrix-vector 
multiplication where the band matrix consists of elements of only 
0, I, and -1. The dependence graphs (DGs) of the 3-band 
matrices in the three stages are shown in Fig. 1. Numbers in 
nodes represent matrix elements in the corresponding 3-band 
matrices. 
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Fig. I : Homogeneous DGs of 3-band matrixes in (a) stage I, (b) 
stage 2 and (c) stage 3 of the order-8 DIF DFI’. 

Direct mapping of the homogeneous DG in each butterfly 
stage leads to three PEs. However, it is possible to reduce the 
hardware cost by some manipulation of the DGs. We move the 
lower band in each DG rightward and cascade it with the upper 
band as illustrated in Fig. 2. After the movement, the original 
homogeneous DGs become heterogeneous, and thus some 
multiplexers are required to select the desirable input operands. 
After projecting and scheduling along the direction of (i, j)=( 1, I), 
only two PEs are required, as shown in Fig. 3 for the first two 
stages of the DIF DFT. We use a different schedule vector for 
stage 3, since the schedule vector of (I, I) leads to poor 
utilization efficiency of PEs and lower throughput rate (only 
50%). In order to derive better architecture for stage 3, the 
direction of the inputs is changed upward, seen in Fig. 4(a). The 
schedule vector is selected as (-1.2) , and the result architecture is 

shown in Fig. 4(b). 

Fig. 2: Heterogeneous DGs of 3-band matrixes in (a) stage 1, (b) 
stage 2 and (c) stage 3 after the movement of the order-8 DIF 
DFI. 



(a) (b) 
Fig. 3: Architectures for the (a) stage 1 and (b) stage 2 of the 
order-8 DIF DFT. 

(4 @I 
Fig. 4: (a) The new DC, and (b) the corresponding architecture in 
the last stage (stage 3) of the order-8 DIF DFT. 

Further improvement for the architectures in Figs. 3 and 4 
is possible. Since the left PE in each stage performs the 
multiplication of 1 or - 1, the two PEs in each stage of Figs. 3 and 
4 can be merged, as shown in Fig. 5 for the three stages. The 
control signal of each multiplexer selects the left or right input 
at the same time when it selects the operations of addition or 
subtraction in the add/sub module. A complete systolic 
architecture for order-8 radix-2 DIF DFT is shown in Fig. 6 
where the number of registers in each stage is slightly different 
from that in Fig. 5 since we further reduce the number of registers 
through re-timing. 

efficiency of the multiplier is only 50 percentage since half of the 
multiplied coefficients in each multiplier are l’s, as can be found 
in the diagonal elements of BD,(8) and BD,(4). Thus, we could 
add some control to bypass the input while the multiplied value is 
1 in order to save power consumption. Thus, the DIF DFI 

The two multipliers between stages l-2 and stages 2-3 

architecture can easily save not only area but also power while 

realize respectively the multiplication of the diagonal elements in 
BD,@) and 80,(4) of Eqn. (5). Note that no multiplier is required 

maintaining the high throughput rate, a favorable design in 

for BD,(2) since all the diagonal elements are 1. In fact, the 

multiplication coefficients of BD,(N) in Eqn. (2) and the efticient 
mapping of the heterogeneous DGs in Fig. 2 for the 3-band 
matrix BB,. Most other systolic DFT architectures, for example 
that in [4], requires O(N) PEs making them impractical for VLSI 
implementation when N is large. 

(a) (b) (cl 
Fig. 5: The single-PE architecture for (a) stage 1, (b) stage 2, and 
(c) stage 3 of the order-8 DIF DFT. 

Fig. 6: A complete systolic architecture for the radix-2 order-8 
DIF DFI (or DIT IDFT). 

Fig. 7: General architecture of stage i (except the last stage) for 
order-N DIF DFI (or DIT IDFT). 

[41 111 ours 

# of complex >N 3bLJ lo&N-l 
multipliers 

# of complex >N 3hfl logA’ 
adders 

operation per one complex one complex one complex 
cycle multiplication- multiplication- multiplication 

addition addition 

throughput 1 sample/cycle 1 samplelcylce I sample/cycle 

Tab. 2 : Comparison of several systolic DFT architectures. 

N power of 2. Compared with the approach in [I] that calls for 3 
log,N adders and 3log,N multipliers, our algorithm leads to much 
less hardware since the common factors in each row of Ez(N) 

are collected into the diagonal entry of BDz(N) . Architecture for 
order-N DIT DFI (or the DIF IDFT) is the mirror of that for 
order-N DIF DFI (or DIT IDFT) and could be derived by 
reversing the stage order in Fig. 6. 

consideration of area, power, and speed performance. VLSI 
implementation of a low-power high-throughput 8-pt. DIWIDFT 
processor will be given in Sec. 4. 

The 8-pt. DIF DFT (or DIT IDFT) architecture can be 
easily scaleable to general order of N. Fig. 7 shows the 
architecture of an N-pt. DIF DFT (or DIT IDFT) for any stage i 
(i # log, N) except the last stage. The architecture of the last stage 

is the same as that in Fig. 6. Thus, only 1ogJV adders and lo@-I 
multipliers are required to compute the DFIXDFT of size N with 

4. Implementation 
A practical VLSI implementation of an order-8 DIF DFT and 
DIT IDFI processor with the architecture shown in Fig. 6 is 
given in this section using cell-based design methodology with 
Compass 0.6um cell library. The major components include 
complex adders, complex multipliers, coefficient ROM, and a 
finite state machine (FSM) for the control unit. 

Tab. 2 compares our radix-2 DFI architectures with another 
recently proposed O(log,N) architecture by Boriakof in [ 1] where 
the butterfly operation in each stage is implemented by three 
multiplication-addition units. The reduction of the hardware cost 
in our DFT processor is due to the factoring out of the common 

A. Complex Multipliers 
A complex multiplication (sl+ js2)x(cl+ $2) of an input signal 

(sl+js2) and a coefficient (cl+ j c2) requires four real multipliers 
and two real adderskubtractors. Each butterfly stage (except the 



last stage) in the order-8 DFT processor also needs two ROMs to 
store the real (cl) and the imaginary (~2) parts of the coefficients 
to be multiplied. Another representation of the complex 
multiplication is 

(sl + js2) x (cl + JC2) = 
[cl(sl 1+ s2) - s2(cl+ c2)] + j(cl(s1 + s2) - sl(c1 -c2)] 

which calls for only three real multipliers, three 
adderskubtractors plus three ROMs storing (cI+c2), (cl-c2), and 
cl. Compared with the first approach, the second method requires 
one real multiplier less, but one more real adderkubtractor and 
one more ROM. Since the ROM size depends on the order N, 
while the area of a real multiplier and an adder depends on the bit 
accuracy, we perform some experiment and find that with N<256 
and for 8-bit accuracy, the second complex-multiplication 
approach takes less area. 

We also observe that the coefficients in the diagonal matrix 

ED;‘(N) of DIT IDFT are the reciprocals of those in the diagonal 

matrix BD~(N) of DIF DFT. In other words, the coefficients for 

IDFT have the same real parts but opposite imaginary pats as 
those for DFT. Thus, by adding a multiplexer to switch the data 
from the two ROMs of (cl+c2) and (cl-c2), both the DIF DFT 
and DIT IDFT can share the same ROM. 

B. ConLroI 
The control signals of 1 or -1 for the DIF DFT architecture are 
very regular in each butterfly stage and can be generated from 
counters. The signal of 1 selects the direct input of the 
multiplexer, and also controls the addition of the 
adderskubtractor while the control signal of -1 selects the 
delayed input and specifies the subtraction operation of the 
adder/subtracter. 

After generation of the control signals, we have to design a 
finite state machine (FSM) to incorporate the operations of PEs in 
all the butterfly stages. This includes the generation of the start 
and stop signals in each stage, the request signal for the address 
counter of the ROM, and the data-ready signal for the output port. 
Fig. 8 shows the FSM for the control of the i-th ( i + log2 N ) stage 

in the DIT DFT (or DIF IDFT) processor. 
The FSM is divided into three phases: the tilling pipeline 

phase, the full pipeline phase, and the freeing pipeline phase, 
depending on whether the input signal is going into the stage, 
completely in the stage, or leaving the stage. The control signal of 
#start-PEO=l starts the control counter to determine the function 
of addition/subtraction and the input selection of the multiplex in 
the PE. The beginning of the multiplier operation is controlled by 
the signal #start-MUL=l which also starts the addressing counter 
to fetch the coefficients from the ROM. The signal of #ready=1 
tells the next stage to begin the computation since the data is 
available. This type of distributed control scheme, with one FSM 
for each stage, makes the processor easily scalable to compute 
DFT of any size. 

The final physical layout of the radix-2 order-8 DFIXDFT 
processor is shown in Fig. 9 with a core area of 3012x3422 un?’ 
and maximum operation frequency of 40M HZ under 0.6um, 5-V 
CMOS technology. The verification of the whole processor, 
including the coefficient ROMs and the control unit, is done in 
the RTL level. The Synopsys Design Analyzer is used to generate 
gate-level code which is then fed into Cadence for automatic 
place-and-route to general the final physical layout. 

Fig. 8: The finite state machines (FSMs) for the control of the i-th 
stage (except the last stage) of DIF DFT processor. 

Fig. 9: The layout of the order-8 DFTADfl with 8-bit accuracy. 

5. Conclusion 
A new high-through low-power architecture has been presented 
which require much less hardware resource compared to other 
similar approaches. The saving of the hardware cost is achieved 
by factoring out the common entries in each row of the 
decomposed matrix and by using the efficient mapping for the 
heterogeneous dependency graphs. The power saving is obtained 
by turning off the unused multiplier when the multiplication 
coefficients are I. Due to the regularity of the structure and the 
related control, the architecture is easily pipelinable and scalable 
to computing DFT of any size. An 8-pt. DFT processor with 
distributed FSM control and coefficient ROMs is practically 
implemented onto a single chip. 
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