
A High-Throughput, Low Power Architecture and Its VLSI Implementation
for DFTADFT Computation

Shen-Fu Hsiao Wei-Ren Shiue
Institute of Computer and Information Engineering

National Sun Yat-Sen University
Taiwan

Abstract N-l

A recursive algorithm for computation of both forward and
backward DPT has been proposed where the common entries in
the decomposed matrices are factored out in order to reduce the
number of multipliers needed during implementation. The
derived algorithm is essentially the band-matrix-vector
multiplication with matrix bandwidth of 3. By exploiting the
heterogeneous dependency graphs for the matrix-vector
multiplication and using an efficient mapping technique, only
log,N adders and fog+I multipliers are needed to compute the
DFT of size N, a great saving from a recently proposed systolic
architecture which calls for 3log,N adders and 3logjV multipliers.
Furthermore, due to the simplicity and regularity of the
architectures, it is possible to design a low power processor by
turning off the hardware components of no operation at proper
time steps. VLSI implementation of the DFDIDFT processor
with distributed FSM for timing control is also presented.

The definition of order-N DFT yk(N,x)= 2 .mxW,$“,
n=O

WN =exp(-j$) for a given input complex data sequence

(xn:n =[O,N- I]) and the output complex data sequence

(yk : k =[O,N - I]) could be expressed as the matrix-vector

multiplication y = E(N) x where E(N) denotes the coefficient
matrix of N-pt. DFT.

Splitting the time index n into two equal intervals, one with
index n’:[O,N/2-I] and the other with index n”=n’+N/2, and

splitting the frequency index k into two equal intervals according
to the even and odd partitioning, we obtain the relationship
among the four N&pt. DFTs as shown in Tab. 1 where E(N/2)

I denotes the N&pt. DPT.

1. Introduction
Discrete Fourier transform (DFT) has been one of the
fundamental operations in DSP. Since the famous fast Fourier
transform (FFT) algorithm by Cooley and Tukey, there have been
a lot of papers on the fast implementation of DFT in order to
achieve real-time processing speed [2]. As VLSI technology
advances, new criteria of designing and evaluating the fast
algorithms emphasize on regularity, modularity, and locality in
the architecture realization. In this case, systolic arrays [3]
become popular for VLSI implementation since they satisfy the
above architecture requirement. However, most papers present
systolic architectures with hardware complexity proportional to
the transform length N, which is impractical for VLSI
implementation of long-length transforms due to the high
hardware cost. Recently, Boriokoff [I] proposed a new systolic
DFT architecture which requires only 3log,N complex adders and
multipliers. The basic idea is to decompose the transform
coefficient matrix into product of simpler band matrices with
only a number of regularly spaced nonzero diagonals, and to
implement the resultant band-matrix-vector multiplication by
efficient systolic arrays.

n = Ii,
n’=[O,N/2-I]

n=n’=n’+NI2

k = 2i,
i=[O,N/2-I]

E(N 12) E(N 12)

k =2i+l E(N12) Wj;:” - E(N12) W;;:’

Tab. 1: The relationship between the four Na-pt. DFTs after the
index partitioning.

Writing Tab. 1 in the matrix form, we have

Y= [I[E(N12) E(NI2) XP
YC’ = E(N/2)C(N/2) 11 -E(N/2)C(N/2) XT ’

In this paper, the number of complex multipliers in
Boriakoff s systolic DFT architecture is further reduced to only
log,N-l by exploiting the features of the entries in the
decomposed coefficient matrices. A hardware-efficient linear
systolic architecture based on the algorithms is generated based
on the mapping of the corresponding hererogeneous dependency
graphs (DGs). The new architecture has very regular structure
and simple control and thus is easily scalable and pipelinable.
Furthermore, due to the regularity of the multiplied coefficients,
it is easy to reduce the power consumption of the Dm processor
by turning off the temporarily unused multipliers. VLSI
implementation of an 8-pt. DFT processor is presented which
consists of the related coefficient ROMs and the distributed finite
state machine (FSM) for the control unit.

where xp is the preceding half of the input data; X, is the rear half
of the input data; yc is the even-numbered transformed data; y0 is

the odd-numbered transformed data; C(N/2) = diq(W;‘;$) is an

(N/2)x(N12) diagonal matrix. Repeating the above partition for

the DFT of progressively smaller size, the frequency index will
be eventually in bit-reverse order while the time index is still in
the normal order. Let R(N) denote the permutation matrix for

the bit-reverse operation of an N-pt. vector and let j = R(N) y be

the bit-reversed output vector of size N. Eqn. (I) becomes

@‘O

2. Recursive Formula for DFT

(1)

1

(2)

where R(N/2) is the permutation matrix for the bit-reversed

operation of N/Z data samples. &N12)=R(N12)E(N12) is

generated by rearranging the rows of E(N12) in bit-reversed

order. I(N/2) is the (N/2)x(N/2) identity matrix.

B2(N)=BDp(N)BB2(N) is the butterfly operation matrix and

can be split into a diagonal matrix m2(N) and a band matrix

BB2(N) consisting of only three nonzero diagonals. Eqn. (2) is

in fact the general decimation-in-frequency (DIF) recursive
formula for order-N DFI [5]. In the next section, we will show
how to realize the butterfly operation LIZ(N) using an efficient
linear systolic array containing only one multiplier and one adder.

SinceDFT(N) is symmetric and the inverse of the

permutation matrix R-'(N) = RT(N) is equal to its transpose, the

decimation-in-time (DIT) DFT algorithm could be simply
obtained from the DIF algorithm. Indeed,

j=&N)x =,R(N)j=R(N)&N)RT(N)R(N)x =$

y=~(~)~T(~)i=~T(~)~T(~)i=(~(N)~(~))Ti=iT(~)i

Thus the recursive algorithm for the order-N DIT DFT can be
expressed as

y= iT(N/2)

[

C(N/2) iT(N/2)

k?(N/2) -C(NI2) kT(N/2) I

;

[

I(Nl2) I(N12) I(N12)

jL II

.iT(N/2)

= I(N12) -[(N/Z) C(N12) iT(N/2) 1 i (3)

B:(N)

= By iTWW
2

[1 bT(N/2)
i

Note the difference of the post-multiplication in B2(N) for the

DIF DFT and the pre-multiplication in B;(N) for the DIT DFT.

Using the same index partition method as in the forward DFI’,
we could obtain general recursive formula for inverse DFT (IDFT)
in DIT or DIF form. The butterfly matrix of the DIT IDFT is

IB 2 (N) = B; t (N) while the butterfly matrix for the DIF IDFT

is [B:(N) = BiT(N) .

We observe that the recursive algorithm for the DIF DFT
and that for the DIT IDFT lead to the same architecture with
different post-multiplication coefficients in the butterfly matrices.
Thus, we can merge the DIF forward DFT and the DIT backward
DFT into the same architecture by changing multiplication

coefficients in ED2 and BD;’ . In fact, as will be seen in Sec. 4,

we don’t need to prepare two different coefficient ROMs (for the
input operand of the multipliers) for both the forward and
backward DFTs. Instead, both DFT and IDFI can share the same
coefficient ROMs.

3. New DFT Architecture

We would consider a special case for N=8 and then extend to the
order-N DFT architecture. According to Eqn. (2), we could obtain

r&(2) 1
ji=

82(2)

E2(2)

B2(2) stage 2

stage 3

where three stages of butterfly operations are

82(4) =
10)

82(S)= 'C4)

-1
E

1

1

I
=

1
112

w4

1

1

4
w3/2
4 --

I

1

-1

I

1

1

1

I

-I

-1

-1

(3

I
Each butterfly operation could be divided into one diagonal
matrix and a 3-band matrix. The multiplication of a diagonal
matrix can be realized by a single multiplier. Thus, we focus on
the structural implementation of the band-matrix-vector
multiplication where the band matrix consists of elements of only
0, I, and -1. The dependence graphs (DGs) of the 3-band
matrices in the three stages are shown in Fig. 1. Numbers in
nodes represent matrix elements in the corresponding 3-band
matrices.

I . : q ullipl~ 8 8 : multiply
b,' I
by.1

cl

cl

c3
r4

CI

cb

c7
eb

(a) (b) (4
Fig. I : Homogeneous DGs of 3-band matrixes in (a) stage I, (b)
stage 2 and (c) stage 3 of the order-8 DIF DFI’.

Direct mapping of the homogeneous DG in each butterfly
stage leads to three PEs. However, it is possible to reduce the
hardware cost by some manipulation of the DGs. We move the
lower band in each DG rightward and cascade it with the upper
band as illustrated in Fig. 2. After the movement, the original
homogeneous DGs become heterogeneous, and thus some
multiplexers are required to select the desirable input operands.
After projecting and scheduling along the direction of (i, j)=(1, I),
only two PEs are required, as shown in Fig. 3 for the first two
stages of the DIF DFT. We use a different schedule vector for
stage 3, since the schedule vector of (I, I) leads to poor
utilization efficiency of PEs and lower throughput rate (only
50%). In order to derive better architecture for stage 3, the
direction of the inputs is changed upward, seen in Fig. 4(a). The
schedule vector is selected as (-1.2) , and the result architecture is

shown in Fig. 4(b).

Fig. 2: Heterogeneous DGs of 3-band matrixes in (a) stage 1, (b)
stage 2 and (c) stage 3 after the movement of the order-8 DIF
DFI.

(a) (b)
Fig. 3: Architectures for the (a) stage 1 and (b) stage 2 of the
order-8 DIF DFT.

(4 @I
Fig. 4: (a) The new DC, and (b) the corresponding architecture in
the last stage (stage 3) of the order-8 DIF DFT.

Further improvement for the architectures in Figs. 3 and 4
is possible. Since the left PE in each stage performs the
multiplication of 1 or - 1, the two PEs in each stage of Figs. 3 and
4 can be merged, as shown in Fig. 5 for the three stages. The
control signal of each multiplexer selects the left or right input
at the same time when it selects the operations of addition or
subtraction in the add/sub module. A complete systolic
architecture for order-8 radix-2 DIF DFT is shown in Fig. 6
where the number of registers in each stage is slightly different
from that in Fig. 5 since we further reduce the number of registers
through re-timing.

efficiency of the multiplier is only 50 percentage since half of the
multiplied coefficients in each multiplier are l’s, as can be found
in the diagonal elements of BD,(8) and BD,(4). Thus, we could
add some control to bypass the input while the multiplied value is
1 in order to save power consumption. Thus, the DIF DFI

The two multipliers between stages l-2 and stages 2-3

architecture can easily save not only area but also power while

realize respectively the multiplication of the diagonal elements in
BD,@) and 80,(4) of Eqn. (5). Note that no multiplier is required

maintaining the high throughput rate, a favorable design in

for BD,(2) since all the diagonal elements are 1. In fact, the

multiplication coefficients of BD,(N) in Eqn. (2) and the efticient
mapping of the heterogeneous DGs in Fig. 2 for the 3-band
matrix BB,. Most other systolic DFT architectures, for example
that in [4], requires O(N) PEs making them impractical for VLSI
implementation when N is large.

(a) (b) (cl
Fig. 5: The single-PE architecture for (a) stage 1, (b) stage 2, and
(c) stage 3 of the order-8 DIF DFT.

Fig. 6: A complete systolic architecture for the radix-2 order-8
DIF DFI (or DIT IDFT).

Fig. 7: General architecture of stage i (except the last stage) for
order-N DIF DFI (or DIT IDFT).

[41 111 ours

of complex >N 3bLJ lo&N-l
multipliers

of complex >N 3hfl logA’
adders

operation per one complex one complex one complex
cycle multiplication- multiplication- multiplication

addition addition

throughput 1 sample/cycle 1 samplelcylce I sample/cycle

Tab. 2 : Comparison of several systolic DFT architectures.

N power of 2. Compared with the approach in [I] that calls for 3
log,N adders and 3log,N multipliers, our algorithm leads to much
less hardware since the common factors in each row of Ez(N)

are collected into the diagonal entry of BDz(N) . Architecture for
order-N DIT DFI (or the DIF IDFT) is the mirror of that for
order-N DIF DFI (or DIT IDFT) and could be derived by
reversing the stage order in Fig. 6.

consideration of area, power, and speed performance. VLSI
implementation of a low-power high-throughput 8-pt. DIWIDFT
processor will be given in Sec. 4.

The 8-pt. DIF DFT (or DIT IDFT) architecture can be
easily scaleable to general order of N. Fig. 7 shows the
architecture of an N-pt. DIF DFT (or DIT IDFT) for any stage i
(i # log, N) except the last stage. The architecture of the last stage

is the same as that in Fig. 6. Thus, only 1ogJV adders and lo@-I
multipliers are required to compute the DFIXDFT of size N with

4. Implementation
A practical VLSI implementation of an order-8 DIF DFT and
DIT IDFI processor with the architecture shown in Fig. 6 is
given in this section using cell-based design methodology with
Compass 0.6um cell library. The major components include
complex adders, complex multipliers, coefficient ROM, and a
finite state machine (FSM) for the control unit.

Tab. 2 compares our radix-2 DFI architectures with another
recently proposed O(log,N) architecture by Boriakof in [1] where
the butterfly operation in each stage is implemented by three
multiplication-addition units. The reduction of the hardware cost
in our DFT processor is due to the factoring out of the common

A. Complex Multipliers
A complex multiplication (sl+ js2)x(cl+ $2) of an input signal

(sl+js2) and a coefficient (cl+ j c2) requires four real multipliers
and two real adderskubtractors. Each butterfly stage (except the

last stage) in the order-8 DFT processor also needs two ROMs to
store the real (cl) and the imaginary (~2) parts of the coefficients
to be multiplied. Another representation of the complex
multiplication is

(sl + js2) x (cl + JC2) =
[cl(sl 1+ s2) - s2(cl+ c2)] + j(cl(s1 + s2) - sl(c1 -c2)]

which calls for only three real multipliers, three
adderskubtractors plus three ROMs storing (cI+c2), (cl-c2), and
cl. Compared with the first approach, the second method requires
one real multiplier less, but one more real adderkubtractor and
one more ROM. Since the ROM size depends on the order N,
while the area of a real multiplier and an adder depends on the bit
accuracy, we perform some experiment and find that with N<256
and for 8-bit accuracy, the second complex-multiplication
approach takes less area.

We also observe that the coefficients in the diagonal matrix

ED;‘(N) of DIT IDFT are the reciprocals of those in the diagonal

matrix BD~(N) of DIF DFT. In other words, the coefficients for

IDFT have the same real parts but opposite imaginary pats as
those for DFT. Thus, by adding a multiplexer to switch the data
from the two ROMs of (cl+c2) and (cl-c2), both the DIF DFT
and DIT IDFT can share the same ROM.

B. ConLroI
The control signals of 1 or -1 for the DIF DFT architecture are
very regular in each butterfly stage and can be generated from
counters. The signal of 1 selects the direct input of the
multiplexer, and also controls the addition of the
adderskubtractor while the control signal of -1 selects the
delayed input and specifies the subtraction operation of the
adder/subtracter.

After generation of the control signals, we have to design a
finite state machine (FSM) to incorporate the operations of PEs in
all the butterfly stages. This includes the generation of the start
and stop signals in each stage, the request signal for the address
counter of the ROM, and the data-ready signal for the output port.
Fig. 8 shows the FSM for the control of the i-th (i + log2 N) stage

in the DIT DFT (or DIF IDFT) processor.
The FSM is divided into three phases: the tilling pipeline

phase, the full pipeline phase, and the freeing pipeline phase,
depending on whether the input signal is going into the stage,
completely in the stage, or leaving the stage. The control signal of
#start-PEO=l starts the control counter to determine the function
of addition/subtraction and the input selection of the multiplex in
the PE. The beginning of the multiplier operation is controlled by
the signal #start-MUL=l which also starts the addressing counter
to fetch the coefficients from the ROM. The signal of #ready=1
tells the next stage to begin the computation since the data is
available. This type of distributed control scheme, with one FSM
for each stage, makes the processor easily scalable to compute
DFT of any size.

The final physical layout of the radix-2 order-8 DFIXDFT
processor is shown in Fig. 9 with a core area of 3012x3422 un?’
and maximum operation frequency of 40M HZ under 0.6um, 5-V
CMOS technology. The verification of the whole processor,
including the coefficient ROMs and the control unit, is done in
the RTL level. The Synopsys Design Analyzer is used to generate
gate-level code which is then fed into Cadence for automatic
place-and-route to general the final physical layout.

Fig. 8: The finite state machines (FSMs) for the control of the i-th
stage (except the last stage) of DIF DFT processor.

Fig. 9: The layout of the order-8 DFTADfl with 8-bit accuracy.

5. Conclusion
A new high-through low-power architecture has been presented
which require much less hardware resource compared to other
similar approaches. The saving of the hardware cost is achieved
by factoring out the common entries in each row of the
decomposed matrix and by using the efficient mapping for the
heterogeneous dependency graphs. The power saving is obtained
by turning off the unused multiplier when the multiplication
coefficients are I. Due to the regularity of the structure and the
related control, the architecture is easily pipelinable and scalable
to computing DFT of any size. An 8-pt. DFT processor with
distributed FSM control and coefficient ROMs is practically
implemented onto a single chip.

References:

[l] V. Boriakoff, “FFT Computation with Systolic Arrays, A New
Architecture”, IEEE Trans. Circuits and Systems-II, Vol. 41, No.
4, pp. 278-284, Apr. 1995.

[2] P Duhamel and M. Vetterli, “Fast Fourier Transform: A
Tutorial Review and a State of the Art”, Signal Processing, Vol.
19, No. 4, pp. 259-300, Apr. 1990.

[3] S. Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[4] C.-M. Liu and C.-W. Jen, “On the Design of VLSI Arrays for
Discrete Fourier Transform”, IEE Proc.-G, Vol. 139, No. 4, pp.
541-552, Apr.1992.

[5] A. V. Oppenheim and R. W Schafer, “Discrete-Time Signal
Processing”, Prentice-Hall, 1989.

