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ABSTRACT 

A multi-dimensional variable-length subband coder for pre- 
stack seismic data was presented. A 2- and 3-D separable near per- 
fect reconstruction filter bank was optimized to maximize the cod- 
ing gain, assuming that the correlation properties of pre-stack seis- 
mic data can be modeled by directional dependent autoregressive 
processes. Identical quantization and entropy coder allocation strat- 
egies were utilized to isolate the compression efficiency of the dif- 
ferent high-dimensional filter bank methods. An example, with com- 
pression ratios ranging from 160: 1 to 320: 1, showed that 3-D sub- 
band coding of common shot gathers performed 50 % better in terms 
of bit rate at a given signal-to-noise ratio compared to 2-D subband 
coding of common shot gathers. 

1. INTRODUCTION 

Acquisition of seismic data in marine exploration generates large 
datasets which today are managed by gigabyte tape storage units 
in combination with terabyte disk storage systems. Seismic data 
compression makes the data storage easier and has a potential of 
reducing the time for network transfer from hours to minutes. 

Previous work on lossy seismic data compression [ 1,2] based 
on discrete wavelet transform (DWT) coding, which is a compres- 
sion technique strongly related to subband coding, show that the 
data organization (e.g., dimensionality and sorting) is important in 
order to achieve large compression ratios with an acceptable noise- 
level. Using a2-D data organization, compression ratio of 50: 1’ [ 1] 
for pre-stack data is achieved without introduction of noticeable 
degradation. With 3- and 4-D data organizations compression ra- 
tios of 100: 1 and 300: 1 [2], respectively, are achieved for pre-stack 
data with small presented distortion due to increased redundancy. 
In this context, high-dimensional data organization does not mean a 
3- or 4-D data survey in general, but rather datasets structured into 
one perpendicular direction (temporal or spatial) and at least two 
spatial dimensions at the sea surface (sensors and shots). 

High-dimensional DWT coding of seismic data in particular 
has been investigated by Reiter [3] and by Villasenor et al. [4]. This 
topic is specially appealing because seismic data of nature are highly 
anisotropic and contain high amount of noise [5]. A full utilization 
of the dimensionality makes the seismic data compression easier. 
However, it becomes more involved to restore for instance single 
traces after high-dimensional coding. In addition, up to 10 % of 
a seismic survey is auxiliary data which is maximally compressed 
10: 1 by sophisticated lossless methods. Thus, compression ratios 
much greater than 100: 1 provide less marginal gain [4]. Neverthe- 
less, the distortion should be as small as possible for a given target 

1 A compression ratio of c: 1 corresponds to 32/c bits per sample. 

compression ratio, say > 100: 1, and using additional dimensions 
in seismic data compression is therefore attractive. 

In a previous article [6], we proposed a subband coder for 2-D 
post-stack data which represents state-of-the-art among developed 
methods. In this paper, a high-dimensional compression scheme 
for 2- and 3-D2 pre-stack data based on subband decomposition 
followed by uniform threshold quantization and entropy coder allo- 
cation is proposed. We basically address two issues: Firstly, a 3-D 
separable near perfect reconstruction filter bank for seismic cubes 
(i.e., 3-D pre-stack data) is optimized with respect to coding gain [7]. 
We keep the quantization and the entropy coder allocation constant, 
irrespective of non-optimality, to isolate the compression efficiency 
of the multi-dimensional subband decomposition techniques. Sec- 
ondly, a proper seismic data organization is investigated. The dis- 
tortion rate function of multi-dimensional seismic data compres- 
sion is given in addition to quantitative comparisons between 2- 
and 3-D subband seismic data compression examples. 

2. SUBBAND CODING 

Subband coding is a popular algorithm for image compression [8]. 
The principles of subband image coding is based on the decompo- 
sition of the image into narrow spectral subbands by a separable 
analysis filter bank. Each subband is then decimated to keep the to- 
tal number of samples unchanged compared to the original image 
representation, and finally coded. At the receiver side, the subband 
image is decoded and the image is reconstructed by interpolation 
in a separable synthesis filter bank. Likewise, subband coding of 
3-D data requires a subband decomposition in the third direction. 
Unlike typical video sequences, the amount of “motion” is low in 
seismic cubes and the energy compaction will be high even with- 
out block motion estimation and compensation [4]. We therefore 
do not include block motion adaption [9] in our algorithm. In fact, 
such a block approach will perform very poorly when used on seis- 
mic data. Our compression scheme is a full-frame method which 
in principle can contain an arbitrary number of dimensions. This 
corresponds directly to seismic data acquisition methods since no 
partitioning of the seismic data will be required. 

3. SEISMIC DATA 

We consider 2-D pre-stack data that can be sorted to common shot 
gathers (CSGs, Figure 1 (a)) or common offset gathers (COGS, Fig- 
ure 1 (b)) depending on the application [5]. In the case of a plane 
layer, the two-way travel time curve is non-flat for a CSG and flat 
for a COG. Hence, aCOG image (see Figure 2 (b)) usually contains 

23-D data organization. 
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(a) CSG arranging. (b) COG arranging. 

Figure 1: Illustration of CSG and COG sorting in the case of a sin- 
gle horizontal interface. The arrows indicate two-way travel times. 

higher correlation and is simpler to compress in 2-D coding than a 
CSG image (see Figure 2 (a)). 

A dataset consisting of 176 shots with 120 sensors per shot and 
1000 samples per trace with 32 bits per sample was coded-decoded 
at very low bit rates (6 0.2 bits per sample) with different high- 
dimensional filter bank schemes. The dataset was preceded by 
240 bytes per trace SEGY header information [5] which was strip- 
ped off and totally neglected. 

4. SYSTEM DESCRIPTION 

A multi-dimensional compression scheme based on subband de- 
composition followed by uniform threshold quantization and en- 
tropy coder allocation was applied to 2- and 3-D pre-stack data. 

Four subband decomposition schemes were evaluated: Firstly, 
the sensor-time planes, e.g. CSG images, were filtered with a 
2-D filter bank (method Ia) and in the 3-D case the shot-direction 
was additionally filtered by a transform as the third step (method 
Ib). Secondly, the shot-time planes, e.g. COG images, were filtered 
with a 2-D filter bank (method IIa) and in the 3-D case the sensor- 
direction was additionally filtered by a transform as the third step 
(method IIb). The difference in data organization between met- 
hods Ia to IIb is seen in Figure 2. Intuitively, method IIa performs 
better than method Ia in 2-D coding. The situation will most likely 
be reversed in 3-D coding, i.e. method Ib is better than method IIb, 
because CSG cubes have greater redundancy in the third direction 
than COG cubes. 

4.1. Statistical Analysis 

Efficient coder optimization calls for good statistical models of the 
signal to be compressed. In our case, two models are required. One 
for handling the statistics of the original signal to optimize the fil- 
ter bank with respect to coding gain, and another statistical model 
of the subband signal to optimize the variable-length coder with re- 
spect to distortion rate performance. For the first model, we use a 
separable autoregressive (AR) process [lo] fitted to the correlation 
of the seismic cubes shown in Figure 2. For the second model, on 
the other hand, we use a Gaussian mixture distribution representa- 
tion [II]. 

Table 1: The selected AR processes and correlation coefficients. 

Direction 1 Model 1 Coefficients 
Sensor 1 AR(2) p1 = 0.70 I o2 = 0.30 
Time 
Shot 

In the case of CSG and COG data, the sample to sample corre- 
lation is much higher in the shot-direction as compared to the sensor- 
and time-direction. Figure 3 shows the normalized estimated au- 
tocorrelation functions (acfs) in the three directions for the seismic 
cubes in Figure 2. We choose a directional dependent separable sta- 
tistical model with different AR nrocesses to describe the acfs. A 

4.2. Filter Bank Optimization 

The 2- and 3-D, separable, parallel, uniform, non-unitary, linear 
phase, FIR filter bank was optimized with respect to coding gain 
according to the AR processes described in the last section. We 
used a 4-, 8- and &channel filter bank in the sensor-, time- and shot- 
direction, respectively. Horizontally and vertically, the impulse re- 
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(a) 120x1000x176 
CSG volume used in 
method I. 

(b) 176 x 1000 x 120 

COG volume used in 
method II. 

Figure 2: The seismic cubes where an image is a horizontal-vertical 
slide of the volume. 

first-order AR (AR(l)) model is used to represent the correlation 
of the pre-stack data in the shot-direction, while AR(2) models are 
selected in the sensor- and time-direction. The correlation coeffi- 
cients which provide a close fit to the normalized estimated acfs are 
given in Table 1, and their respective acfs are depicted in Figure 3. 
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(a) Sensor-direction. (b) Time-direction. (c) Shot-diction. 

Figure 3: The normalized estimated acfs (solid lines) and the acfs to the utilized AR processes (dashed lines). 

sponses had lengths equal to four times the number of channels. 
In the third direction, however, the impulse responses had lengths 
equal to the number of channels (i.e., a square transform) because 
this provided us with a simple non-expansive subband decomposi- 
tion method. A square transform may be regarded as a special case 
of a uniform filter bank, with the basis functions of a transform in- 
terpreted as the impulse responses of a filter bank [8]. We refer to 
Table 2 for a summary. 

Table 2: Number of channels and taps. 

5. DISTORTION RATE FUNCTION 

Obviously, it is advantageous with respect to compression efficiency 
to exploit all dimensions [4]. To motivate this, we calculate the dis- 
tortion rate function (DRF) based on the assumptions of stationar- 
ity, separability and unit variance. In the high bit rate (i.e., 2 1 bit 
per sample) N-D-case the DRF can be written as [7]: 

N= 1,2and3, (1) 

where D is the mean-square error (MSE) as a function of the bit rate 

R ~d&n is the spectral flatness measure (sfm) of the AR process 
in the n&direction. n = 1,2 and 3 denote the time-, sensor- and 
shot-direction, respectively. For an AR(l) process the sfm is given 

by [71 

Similarly, for an AR(2) process the sfm is given by [7] 

-2 = 
(1 +b2)(1- bl -b2)(1+lQ - b2) 

(1 - b2) 
(3) 

with b1 = plif-Py) and b2 = 5 

D is normalized such that the signal-to-noise ratio (SNR)3 can be 
written as SNR = -10 log,, D. If we insert the AR processes 
and the correlation coefficients given in Table 1 into Equations 2 
and 3, and finally use Equation 1, we can display the SNR as func- 
tion of the bit rate (see Figure 4). For the sake of exemplification, 
at an SNR equal to 30 dB the bit rate is decreased approximately 
by 33 % and 20 % in the case of 3-D coding as compared to l- and 
2-D coding, respectively. 

Figure 4: Distortion rate performance: 1-D coding of time traces 
(dashdotted line), 2-D coding of sensor-time images (dashed line) 
and 3-D coding of sensor-time-shot cubes (solid line). 

In real simulations at low bit rates (i.e., << 1 bit per sample), we 
expect similar trends: 3-D coding performs better than 2-D cod- 
ing, and 2-D coding performs better than 1-D coding. However, 

r3 = (1 - d,. (2) 
3The SNR is defined as the ratio of the mean-square signal power to the 

mean-square error power and is usually given in dB. 



in the high bit rate case we will not have an asymptotic match be- 
tween the simulations and the distortion rate performance given in 
Figure 4. This is mainly due to the assumption that the overall sta- 
tistical model is valid also when the local statistics vary. The as- 
sumption of separability, on the other hand, is more reasonable for 
seismic data than for most other types of data [4]. 

6. SIMULATIONS AND DISCUSSION 

The purpose of the simulations was to evaluate the four subband 
decomposition methods described in Section 4. 

The seismic cubes given in Figure 2 were coded-decoded at 
compression ratios ranging from 16O:l (0.2 bits per sample) to 
320: 1 (0.1 bits per sample). The SNR was used as a quality mea- 
sure although the SNR is highly dependent on the bandwidth char- 
acteristic and the amplitude distribution (or balance) of the dataset 
used. A low bandwidth coded-decoded dataset normally has higher 
SNR than a high bandwidth dataset. A well balanced coded-decoded 
dataset (i.e., with approximately uniform amplitude distribution) 
tends to have lower SNR than a poorly balanced dataset despite that 
the actual quality on well balanced datasets are better [3]. Note that 
our dataset was not properly balanced. Nevertheless, the SNR is a 
simple and good scalar indicator when comparing 2- and 3-D sub- 
band filtering methods. The SNRs and the bit rates were averaged 
along the shot-direction for the CSG volume and along the sensor- 
direction for the COG volume. 

Figure 5: Simulation results for the four different subband decom- 
position methods: method Ia (solid line), method Ib (solid line with 
o), method IIa (dashed line) and method IIb (dashed line with *). 

The simulation results are shown in Figure 5. 3-D coding per- 
forms better than 2-D coding, and 3-D CSG coding is better than 
3-D COG coding. This is consistent with our presumptions. For in- 
stance, at an SNR equal to 11 dB the bit rate is decreased as much as 
50 % in the case of method Ib as compared to method Ia. Further 
improvements can be expected by optimizing the variable-length 
coder with respect to distortion rate performance. 

7. SUMMARY 

A high-dimensional subband compression scheme for pre-stack 
data was presented. The filter bank was optimized with respect to 
coding gain using a directional dependent separable statistical mo- 
del with different autoregressive (AR) processes. A first order AR 
model was used to represent the correlation of the pre-stack data in 
the shot-direction, while second order AR models were used in the 

sensor- and time-direction. 3-D coding performed better than 2-D 
coding, and 3-D common shot gather coding was better than 3-D 
common offset gather coding. 

Further work will include a study of how seismic data process- 
ing is affected by pre-stack data compression. 
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