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ABSTRACT

We propose an error correction technique for speaker-
independent isolated word recognition by compensat-
ing for a word’s likelihood. Likelihood is compensated
for by likelihood calculated by a phonetic bigram. The
phonetic bigram is a phoneme model expressing frame
correlation within an utterance. A speaker-independent
isolated word recognition experiment showed that our
proposed technique reduces recognition error compared
to conventional techniques. The proposed technique
achieves performance almost equal that without speaker
adaptation compared to the conventional phoneme
model adapted using several words.

1. INTRODUCTION

Frame correlation for hidden Markov model (HMM) is
often used to increase phoneme model accuracy[1][2].
Techniques using frame correlation model the relation-
ship between state transitions and a pair of consecutive
frames to express spectral transition.

We developed a phoneme model, the phonetic bi-
gram[3], that models the relationship between pairs of
separate frames in phonemes within an utterance. Lo-
cal features such as spectral transition are expressed
by the feature extracted from several frames of spectra
and global features expressed by the phonetic bigram.
A phoneme recognition experiment demonstrated the
phonetic bigram’s effectiveness.

We also propose error correction for speaker-inde-
pendent isolated word recognition by compensating for
a word’s likelihood[4]. Likelihood is compensated for
by the likelihood calculated by the phonetic bigram.
A speaker-independent isolated word recognition ex-
periment showed that the proposed technique reduces
recognition error by about 19% compared to conven-
tional techniques. A comparison of the proposed tech-
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nique to speaker adaptation showed that the poten-
tial of the proposed technique is comparable to the
phoneme model adapted by several words using maxi-
mum a posteriori probability estimation(MAP)[5]. The
proposed technique does not require speaker adapta-
tion.

2. PHONETIC BIGRAM

The probability of phoneme sequence is shown in Equa-
tion 1, which has a correlation between a spectrum and
a phoneme and between separate frames of spectra.
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where x,, 18 the n’th phoneme in a phoneme sequence
and y,, is 1ts observation vector. A phoneme’s probabil-
ity 1s shown in Equation 2 assuming that the spectrum
of a certain phoneme is correlated with spectra of all
preceding phonemes. This model is called a phoneme
bigram.

P(Ym|Y1y2"'ym_1x1x2...xm)
= ] Plsymleeen) |
k=1 P(yk|xkxm) ’
(m>1) (2)

3. LIKELTHOOD COMPENSATION FOR
ISOLATED WORD RECOGNITION

Equations 1 and 2 cannot be used as for word recogni-
tion due to enormous computational cost and the fact
that the reliability of preceding phonemes is not con-
sidered. Computational cost is directly proportional to



the square of the number of phonemes (Equation 2).
Frames of preceding phonemes are used regardless of
reliability, leading to use of incorrect frames.

We propose the phonetic bigram as postprocessing
rather than direct phonetic bigram use. Isolated words
are first recognized using a conventional phoneme mod-
el. A posteriori probability is calculated simultaneously
for each phoneme frame by frame. Spectra weighted by
a posteriori probability are summed, then a phonetic
image of the word is calculated by normalizing them
(Equation 3).
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where W is a word, ¢ is the frame number, w is a
phoneme in W, zw (w) is the phonetic image of w in
W, P(t,w) is the probability of w in W at ¢, and
PPy (t,w) is a posteriori probability of w in W at
t. The phonetic image is used instead of preceding
phoneme spectra in Equation 2. Likelihood is recal-
culated by phonetic bigram using the phonetic image
(Equation 5) for each upper candidate of first word
recognition results.
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where n is the number of types of phonemes included
in W. Phoneme boundaries determined by a Viterbi
algorithm are also used.

The computational cost of this phonetic bigram is
directly proportional to the number of types of pho-
nemes, and 1s reduced below the computational cost
of the original phonetic bigram directly proportional
to the square of the number of phonemes. The en-
tire computational cost of word recognition is reduced
because only a few candidates are calculated. The pho-
netic image becomes increasingly reliable because reli-
able spectra are focused over the utterance using the a
posteriori probability of phonemes.

The phonetic bigram using a phonetic image is ap-
plied to observation probability distribution of phoneme
HMM. The phonetic image 1s extended to calculate
each phoneme HMM state (Equation 6).

bx (Za Yy, ZW)

where @& are phonemes in W, z[i] is the #’th state of
z, £[k] is the k’th state of &, zw (£[k]) is the phonetic
image of {[k], Ayye(k) is the mixture weight of 2]
for £[k] and by (i,y,2zw) is the observation probability
distribution of 7.

The result of word recognition is determined by the
logarithmic likelihood calculated from the first loga-
rithmic likelihood by the original phoneme HMM and
the logarithmic likelihood by the phonetic bigram (E-
quation 8). The logarithmic likelihood of the original
phoneme HMM is compensated for by the phonetic bi-
gram.

L (W) =plog (P (y1y2-|W))
+ (1 —p)log (P (y1y2-|W,zw)) (8)

where p is the mixing ratio of logarithmic likelihood
and L (W) is the compensated logarithmic likelihood
of W.

4. ISOLATED WORD RECOGNITION
EXPERIMENT

Experimental conditions were as follows:

¢ Training/test samples: isolated spoken words
(212 Japanese words) uttered by ten men and
women each. Words totaled 4174.

e Speech is passed through a 29-channel band pass
filter at 10 ms per frame, and the dimension of the
spectrum pattern is reduced from 145 (29 chan-
nels by 5 frames) to 15 using the K-L expansion
twice. The dimension of phonetic image is 10.

e Type of HMM: 16-state non left-right HMM][6]
with duration probability distribution. It has
phoneme context-dependent state transition
probabilities. Other parameters are phoneme
context-independent.

e Continuous observation probability distribution
(full covariance matrix).

e Each speaker is tested using parameters trained
by 19 other speakers (open speaker/closed vocab-
ulary).
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Figure 1: Recognition result

e Training HMM: Training sections are determined
by hand-label exactly.

The mean vector of the observation probability distri-
bution is initialized by small random numbers. Word
recognition uses a beam search with a bandwidth of
50. The word’s phonetic image is calculated from 50
candidates for each frame.

Recognition error is shown in Figure 1, where p is
the mixing ratio demonstrated in Equation 8. Log-
arithmic likelihood mixing (Equation 8) was effective
experimentally. At p = 0.717, error was a minimum
and reduced about 19% compared to that at p = 1.0
(conventional model only). The number of errors at
p = 0.0 (phonetic bigram only) increases compared to
that at p = 1.0, indicating that conventional recogni-
tion error may sometimes be expanded by the phonetic
bigram. Often, the proposed technique reduces error.
The reasons are (1) the difference in likelihood between
correct and incorrect answers widens when the pho-
netic bigram operates correctly and (2) tendencies of
error differ between the conventional phoneme model
and phonetic bigram.

5. COMPARISON WITH SPEAKER
ADAPTATION

Speaker adaptation is widely used to make phoneme
models more accurate. In an experiment comparing
supervised speaker adaptation with the proposed tech-
nique, the original phoneme model was adapted by
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Figure 2: Comparison with speaker adaptation

MAP using words from samples of one person tested.
Remaining samples were tested by the adapted model.
Word recognition error rate is used for evaluation be-
cause the number of samples differs from the previous
experiment.

Recognition error rate becomes flat over 6 words for
adaptation (Figure 2). The error rates for the proposed
technique and speaker adaptation are almost equal.

6. CONCLUSION

We proposed error correction for speaker-independent
isolated word recognition by compensating for the like-
lihood of a word. Likelihood is compensated for by
the likelihood calculated using the phonetic bigram.
Two types of experiments were carried out. The num-
ber of word recognition errors is reduced about 19%
compared to that of conventional techniques. Though
speaker adaptation is not adopted in the proposed tech-
nique, the error rate of the proposed technique is almost
equal to that for speaker adaptation, confirming the
proposed technique’s effectiveness. Computational cost
of the proposed technique exceeds that for the conven-
tional phoneme model, but it has an advantage when
speaker adaptation is not available. Theoretically, the
proposed technique is applicable to continuous speech
recognition, and speaker adaptation can be applied to
the phonetic bigram.
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APPENDIX

Reestimation for phonetic bigram: The following have
been tested.

alt+1,7) = a(ti)a(i,j)b(i,ye, zw)

B(t,i) = Za(@j)b(i,yt,zmﬁm 1,5)

t=1--T,a(l,i)=7x(),8(T+1,)=1

where o (t,7) is forward probability of i’th state at ¢,
B (t,4) is backward probability of i’th state at ¢, a (¢, j)
is state transition probability from #’th state to j’th
state, and m (¢) is initial probability of ¢’th state.
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D; = 15 and D5 = 10 in this paper.
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a and 7 are reestimated from ~ in the same way of
conventional HMM.

(k,ye) /> v/ (t,0)7



