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ABSTRACT 

For ATM network traffic, a new approach based on the 
Kullback-Leibler information measure is proposed for stochastic 
system identification of packet traffic. Thus approach, equivalent 
to the maximum marginal likelihood estimate, can overcome the 
over-modeling problem in [II such that much more 
parsimonious model order N can be obtained, and then can lead 
significant reduction in the latter queueing analysis involving in 
O(N3) computational complexity. A practical case study is 
provided for a set of Internet traffic data. 

1. INTRODUCTION 

The purpose of this paper is to propose a new stochastic 
identification approach based on the Kullback-Leibler 
information measure for ATM network traffic. 

When modelmg network traffic in the classical queueing 
theories, packet arrivals are often assumed to be Poisson 
processes. A number of studies have shown, however, that for 
both local-area and wide-area network traffic, the distribution of 
packet inter-arrivals clearly differs from exponential (see, for 
instance, [6]). One of the major reasons for this problem is that a 
process of ATM network traffic is highly correlated for high 
speed networks rather than independent (uncorrelated) in 
classical Poisson processes. 

To overcome the difficulty of the classical queueing analysis, 
Markov chain has been proposed as a statistical model to fit the 
correlation nature of the input process [3][4]. In such models, a 
typical ATM network traffic stream is modeled by Markov 
modulated Poisson process (MMPP), where the underlying 
Markov chain is used to reflect the time correlation of the Input 
process. 

Li & Hwang [3][4][5] investigated identifications of the MMPP 
models based on frequency domain. Yi and De Moor [7] 
reconsidered the problem in time domain and converted the 
identification problem into a nonlinear optimization problem. 
Recently, noticing that large computational efforts were involved 
in Yi’s approach, De Cock & De Moor [1] decomposed the 
nonlinear optimizatton problem into two sub-problems such that 
the identification of model order and the identification of Markov 
transition matrix can be made separately. This can significantly 
simplify the large scale opttmtzation problems. 

However, De Cock’s approach will cause serious over-modeling 
problems, i.e.. an over-estimated model order N. For the 
identification stage, to estimate O(N’) parameters in Markov 
transition matrix, O(N3) operations are needed per function 

evaluation in the optimization algorithm [l]. For the latter 
queueing analysis stage, the computational complexity of the 
existing queueing analysis techniques is at least O(N ‘) [5]. Since 
the complexity of many these latter analyses closely depends on 
model order N, it is very important to obtain an appropriate 
model order for improving computational efficiency. 

In this paper, the identification problem of the MMPP models is 
re-formulated based on the Kullback-Leibler information 
measure. Then an information measure based identification of 
ATM network traffic is proposed to overcome the over-modeling 
problem in De Cock’s approach. 

2. PROBLEM FORMULATION 

The packet traffic analysis of the arrival process in one node of 
the network can normally be partitioned into different stages: 
traffic measurement, identification, queueing analysis and 
connection admission control. In this paper, the Identification 
problem will be concentrated on. 

An MMPP model of order N consists of an N-state Markov chain 
in which each state i (i=l,...,N) represents a Poisson process with 

rate h,, that is, an MMPP is a Poisson process for which the rate 
is modulated according to a Markov chain. 

Let p = bJvxN denote the markov transition probabilities. 

Under the steady situation, consider its eigenvector 

qT=qTP 

c,T,q, = I and q,TO, j=l ,...,N. 

Denote two vectors h[ht ,..., h,]r and q=[q, ,..., qN]’ 

For the MMPP model, the one dimensional probability mass 
function and the cumulative distribution function of a stochastic 
process al are given by (see, e.g. [7]) 

Pr{4=xJ =f(x;h,q)= cy=,q, PW, 1 

and Pr(a!3J=FWJl)= ~;=,9,G(*.a,) 

where P(.x;h,) and G(x,h,) are the probability mass function and 
the cumulative distribution function of Poisson with parameter 

$. Hence, for the MMPP model, the one-dimensional probability 

function of a stochastic process uk is actually a mixture of several 
Poisson distributions with q, as its weight. 

The autocorrelation function R(n;h,q,P)=E(al al+,) of the 
stochastic process Us is given by (see [7] for the details) 

R(n;h,q,P)=qTAP”AI n=l,2,... 



where A =diag(h, ,..., h,) and I=[ I,..., l]? 

Finally, the problem of system identification for the MMPP 
model is to determine an appropriate MMPP model order N, and 

to estimate parameters P, q and h from arrival observation uk 
(k=o,l,...). 

3. INFORMATION MEASURE BASED 
IDENTIFICATION 

3.1 A Brief Summary of Previous Work 

According to Li and Hwang [3][4], only the first and the second 
statistics of arrivals Us have a significant impact on queueing 
performance. Noticing these features, Yt & De Moor [7] 
converted the identrfication problem of the MMPP model, by 
matching the first two order statistics in time domain, into 
following nonlinear opttmization: 

2 W,~~fW,q)- kx)I12 +W,IIR(n;a.q,P)-ii(n)l12 

where i is an estimate of the cumulative distribution function, 

R(n) is an estimate of the autocorrelation function R(n;h,q,P) of 

the stochastic process an. 

One of the problems in the above approach is that users must a 
prior provide suitable weights WF and W, . The choice of weights 
are quite important for the estimates of parameters. However, it is 
not easy to determine m practtce. Another problem is that the 
identification of model N must be made together with the 
estimation of O(N*) parameters, which leads the computation 
quite laborious. 

De Cock & De Moor [I] considered a separation strategy for the 
identification of the MMPP model in time domain. The above 
optimization problem is re-considered as two separate sub- 
problems: 

ltfi; II k(x) - F(x,h,q) 112 (14 

Md’” II k(n) - R(n;h,q,P) II2 (lb) 

In this way, the weights W, and W, are no longer needed. 
Moreover, the model order N is determined in Eq. (la) which 

involves in only O(N) parameters, h and q. Hence, the 
complexity of the problem is largely reduced. 

For a set of observations X=(x, I /c=l,...,K), with its values in the 
set (O,] ,..., M), where M=Mux(+ I k=l,..., K), it should be noted 

that the possible values of the parameters ?+(O, M]. To solve 
the sub-problem (la), De Cock & De Moor discretized the 

interval (0, M] with a step h and let 1, = 1, + (j - 1)h . Then, 

for given fixed i, , the sub-problem (1 a) becomes 

Min II i -Aqll, (2) 
9 

subject to q,>O, j=l,...,N. 

where A=[A,,l MxN , A,,= G(x,, 1, 1, y=[~,>...,y~1~, y,=F(x,, fi ) 

After solving the optimization problem (2) and obtaining the 
optimal solution q*, the model order is then determined as the 
number of non-zero components of the optimal solution q*. 

Obviously, to accurately approximate the unknown parameters 

A,, the step h must be taken as sufficiently small. This may 
produce a large scale problem for (2) and cause a serious over- 
modeling which can cause difficulty in the estimation of 

p=[P,,lNxN as mentioned before. 

3.2 A New Identification Approach 

Consider a stochastic process al, having the MMPP model. Under 
steady situation, ak has a probability mass function 

For a set of observations X=(x, I k=l,...,K), based on the 
Kullback-Leibler information measure, the criterion for 
identification can be chosen as minimizing the distance between 
the observed probability mass function o1 and the theoretical one 

flxk;h,q) (kl ,..., K), i.e. 

By some algebra, the problem can be rewritten as 

% (l/K) x:..,log]f(x, i&q) I+ constant (3) 

subject to z,t,q, = 1 and q,>O, ?+O, j=l,..., N. 

Therefore, by solving the above problem (3), the model order N, 

and the parameters A, and qj (j=l,...,N) can be determined. Then, 
using the approach by Yi & De Moor [7] and De Cock & De 

Moor [ 11, the Markov probability transition matrix p = fp,, lNxN 

can be estimated by solving problem (1 b). 

REMARKS: (i) Choice of distance measure is quite important 
in many situations. In this paper, the Kullback-Leobler 
information measure is adopted. The information measure and its 
related maximun entropy criterion are widely used rn many 
science and engmeering fields, for instance, in the estimation of 
car traffic on road networks [8]. Parameter estimation based on 
them are usually related to the principle of most informative [2]. 

(ii) As the Eq. (3) indicating, one of the advantages of choosing 
the Kullback-Leibler information measure is that its close 
relation with likelihood function. Obviously, from (3), 
minimizing the Kullback-Leibler information distance is 
equivalent to maximizing a marginal likelihood function. 

(iii) From (3), the identification for the MMPP model can be 
implemented as two steps: first. to determine model order N and 

2N-1 parameters hi and q, (,j=l,...,N). Then based on (lb) to 
estimate N(N-1) parameters in the Markov probability transition 

matrix P = [p, lNxN In this paper, only the first step 

identification is considered. See[l] and [7] for details of 
estimation of transition matrix P. 



To convert the constrained nonlinear optimization problem (3) 
into an unconstrained one, following transforms are introduced: 

For parameters q, let 

q,=%*/[I+~~~‘u~ I and %=I /[l+~~~‘n~ ] (j=l,...,N-1) 

For parameter h, let 

h,=v, o’=l,...,N) 

Let z=[uT, vr]r. Then, the problem (3) can be re-written as 

hfin J(z;N) = Min (l/K) ~~=,log[h(x, ;z) I (3)’ 
L 

where h(+; z)=fx; h(v), q(u)). 

Particularly, the first order condition gives 

‘, = cf=, ?knk 

where 

z,,, and z9,,, satisfy normalization conditions 

T,~>O for i=l,..., N and k=l,..., K 

~9,~ 20 for i=l,..., N and k=l,..., K 

Hence, the estimate of h, is a weighed average of the 

observations xI with weight n,, which is a natural extension of 

the classical estimate of Poisson distribution k ~~=,n,x, with 

the constant weights &=1/K for al1 k. 

4. A PRACTICAL EXAMPLE 

The data, termed as Ibl-pkt-4, are observations of one hour of 
Internet traffic between the Lawrence Berkeley laboratory and 
the rest of the world, made by Paxson [6]. 

To avoid too many zeros in the data sequence, the raw data are 
binned into l-second bins (which is termed as “pktdata”) for 
analysis according to the standard method [6]. The histograms of 
the “pktdata” are given by Fig. 1. 

It can be seen from Fig. 1 that the histogram has a relative heavy 
tail which means that there are noticeable probabilities for the 
random variable taking larger values which can not be neglected. 
Thus, most of distributions with light tails are not appropriate for 
the data. 

4.1 The Fitness by the Proposed Method 

To illustrate the determination of model order N, the initial value 
of N is taken as 1. Then N is increased gradually. Fig. 2 gives the 
performance characterized by J(z(N)*;N), where z(N)* is the 
optimal solution of the optimization problem (3)‘. 

It can seen from the Fig. 2 that as the model order N increases 
from 1, the fitness becomes better and better. Particularly, at first, 
the improvement is significant, while after N reaches around 14, 
the improvement becomes very limited. This suggests that the 
model order should be taken as a value around 14. Hence, the 
model order N is taken as 14 in this case study. 

“, I 
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Figure 2. The cost function against model order 

Fig. 3 (left) gives the plot of the observed and fitted frequencies 
for the MMPP model with N=14, and their difference by using 
the information measure based identification proposed in this 
paper. It can be seen that the data set “pktdata” is fitted quite 
well. 

In practice, the step of increment for N can be taken larger than 1 
to speed up the search of model order N. After locating the 
approximate value of model order N, further search can be made 
around that approximate value of N. 

4.2 A Comparison with the Previous Method 

In this sub-section, a comparison IS given for the results obtained 
by using the approach proposed in this paper and by using De 
Cock’s approach. 

According to [ 11, a partition for the parameter h is firstly needed. 
For the data set “datapkt”, M=Mux(xa I k=l,...,K)=1910 and 

K=lOOO. Take h=lO. Then h is discretized on the interval (0, M] 

with a step h such that i, = & +(j- 1)h for j=l,...,N, where 

N=l91. Then, from (2), the problem 1s 

Min II k -Aqlb 
Y 

subject to q,20, j=l,...,N. 

withA=& ,91ox,91t A,= G(x,, 1, )v y=[~,,...,y,~,,,l~. y,=F(x,, x 1 
Figure 1. The histograms for all data of the pktdata (left) 
and for those data greater than 200 (right) 



The above problem ts solved and the optimal solution is denoted 
as q*. Take all of the elements of q* which is not less than 
0.0001 (other elements are regarded as “zero”) to constitute a 

new vector qnrw * The corresponding elements of h is denoted as 

h,,,. For the data set “datapkt”, qnew* is a vector with dimension 
37. This means that the estimated mode1 order N*=37. The 

estimated parameter vector h is A,,,. 

The fitted frequencies by using De Cock’s approach and its 
difference with observed frequencies are given by Fig. 3 (right). 
It can be seen that the fitness is satisfactory. Of course, to 

approximate the parameters h with more sufficient precision, a 
much smaller step h is needed, say h=0.5 or 0.1. However, this 
will lead a very large scale for the optimization problem (2), and 
the estimated model order N* will increase to some extent. 

It should be noted that, however, even if the current estimate of 

the parameter vector h is accepted in precision, the resulted 

increment in model order is significant compared with the 
estimate of mode1 order N=14 given in Section 4.1. For latter 
analysis which involves in the complexity of O(N3), the 
magnitude in computation will be reduced from 50,000 (373) to 
2,700 (14’) tf the new approach proposed in this paper is 
adopted. This strongly suggests that it should be important to 
overcome over-modeling problem in such kmd of studies. 

i;;;;!ll;,;!!!%l i-;; ,,!,.!,,, I 
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Figure 3. The comparisons of fitness. Top: the observed 
frequencies; Left middle: fitted frequencies for the 
MMPP(N=14) model identified by the approach 
proposed in this paper, Left bottom: the difference with 
the observed frequencies; Right middle: fitted 
frequencies for the MMPP(N=37) model identified by De 
Cock’s approach; Right bottom: the difference with the 
observed frequencies. 

5. CONCLUSIONS 

A new information measure based approach for stochastic system 
identification of ATM network traffic is proposed in this paper. 
This study is concluded as follows: 

First, similar to the method presented by [l], this new approach 
possesses an advantage over [7] due to its decomposed feature. 

The explorations for mode1 orders are no longer based on overall 
models with O(N’) parameters but on a reduced one with only 
O(N) parameters. Computation for such explorations is then 
substantially reduced. 

Second, much more parsimonious models can be obtained by this 
new approach to overcome the over-modeling problem in the De 
Cock’s approach. This means that not only much computation 
can be reduced during the successive identification stage of 
Markov transition matnx with O(N*) parameters, but 
considerable efforts in computation can be reduced m the latter 
stage of queueing analysis for which computational complexity is 
at least O(N’) [5]. 
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