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ABSTRACT

The Conditional Maximum Likelihood (CML) Princi-
ple, well known in the context of sensor array process-
ing, is applied to the problem of timing recovery. A
new self-noise free CML-based timing error detector
is derived. Additionally, a new (Conditional) Cramer-
Rao Bound (CRB) for timing estimation is obtained,
which is more accurate than the extensively used mod-
ified CRB (MCRB).

1. INTRODUCTION

One of the fundamental tasks of a digital receiver is the
estimation of the symbol timing directly from the received
data. The recent book by Mengali and D’Andrea [1] as well
as the F. Gardner’s report [2] constitute excellent references
for this topic of synchronization. Timing recovery algo-
rithms are typically categorized in Decision-Directed (DD)
and Non-Data_Aided (NDA) methods. While DD schemes
offer better tracking performance, NDA methods are pre-
ferred when the decisions are not available or not reliable.
NDA algorithms offer the additional advantage of being
phase-independent, thus avoiding spurious locks and pro-
longed acquisitions caused by complex iteractions between
phase and timing correction algorithms.

Maximum Likelihood (ML) estimation techniques of-
fer a systematic and conceptually simple guide to derive
synchronization algorithms which provide optimum or near
optimum performance against noise. While the application
of the ML principle is straightforward for the derivation of
DD algorithms, mathematical limitations arise, however, in
the derivation of NDA methods. Then, ML-oriented ap-
proaches have been employed in the literature by resorting
to approximations and heuristic reasoning. On the other
hand, completely ad hoc methods have also been brought
out which offer a significant simplification of the implemen-
tation complexity.

Insuperable mathematical problems also arise in the
computation of the Cramer-Rao Bound (CRB), which es-
tablishes a fundamental lower limit to the variance of any
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unbiased estimator. A more manageable performance limit
is the modified CRB (MCRB) proposed by d’Andrea et al.
[3]. This bound is generally lower than (at most equal to)
the true CRB, and it is difficult to know in advance whether
the MCRB is tight enough for use in practical applications.

In this contribution we adopt the Conditional ML (CML)
approach which has been widely applied to the problem of
Direction-Of-Arrival (DOA) estimation using sensor arrays
(see Stoica and Nehorai paper [4] and references therein).
The application of this principle to the frequency estimation
problem can be found in [5], and its general application to
synchronization problems was proposed in [6]. When adopt-
ing the conditional model, the data symbols, which play the
same role as the sources in the DOA context, are modelled
as deterministic unknown parameters. It is shown that the
application of the CML principle does not need any addi-
tional approximation nor heuristic reasoning, and leads to a
timing error detector structure which does not exhibit self-
noise. We also derive the (asymptotically) true CRB for
timing recovery under the conditional assumption.

2. DISCRETE-TIME SIGNAL MODEL

We assume that the received waveform has a complex en-
velope:

r(t) = s(t) + w(t) (1)

where s(t) is the information-bearing signal and w(t) repre-
sents complex-valued white Gaussian noise with two-sided
power spectral density 2N,. The signal s(t) is modelled as

follows:
L—1

s(t) = Ae?? Z cig(t —iT — 1) (2)
i=0

where 7 is the timing parameter to be estimated, 8 is the
signal phase, A is the signal amplitude, T is the symbol
spacing, {¢;} are complex-valued symbols, L is the number
of symbols and g(t) is the (real-valued) signalling pulse. The
set of unknown, undesired parameters includes the signal
amplitude, the signal phase and the data, and it is denoted
by the following vector:

x = Ace’’ (3)

where the data symbol vector is:

C = [CO"'CL_l]T (4)



In order to apply the theory developed for sensor array
processing, we derive in the sequel a discrete-time signal
model, although the results obtained are general, irrespec-
tive of whether an analog or digital receiver is used. To this
end we chose a sampling frequency of fs = 1/Ts = K/T,
where K is the minimum integer that guarantees the ab-
sence of aliasing. In these circumstances, the performance
of the resulting estimator should not be dependent on the
value of K. After an ideal antialiasing filtering of band-
width fs/2, (1) and (2) can be written as follows:

r=[r(0)---r((M— l)Ts)]T =Ax+w (5)

where M is the number of non-zero samples of r(t), which
depends on the effective length of the signalling pulse, and:

A; = J[a(r) -ap—1(7)]
a;(t) = [g(—T —7),9(Ts —iT —71)---
g((M — )T, —iT — 7)]"
w = [wo---wy_1]T
C. = E [wwH] = 0?1 =2N, f,1

3. CML-BASED TIMING ERROR DETECTOR

The signal model (5) is widely used in the context of sen-
sor array processing (see for instance [4]), were x is the
signal source vector, r is the snapshot and A is the DOA-
dependent transfer matrix. The only difference is that, in
the timing estimation problem, the whole transfer matrix
A is parametrized solely by the timing parameter 7. In the
presence of AWGN, the CML function for the estimation of
T can be expressed as [4]:

Lc(r|m) =tr [Pifﬁ] =Py r (7)

where P§ = I — AA" is the projector onto the orthogonal
signal subspace and A = (AH A)_1 AF is the pseudoin-
verse of matrix A. The CML NDA timing estimator is
defined as the minimizer of (7). To derive a CML timing
error detector we need to compute the derivative of the
CML function with respect to 7, and use it as an error sig-
nal to drive the function L.(r|7) toward its minimum. The
CML gradient has been obtained by Viberg, Ottersten and
Kailath (7] within the more general context of sensor ar-
ray processing. For the problem of timing estimation, the
general gradient expression can be manipulated to yield:

3:(7) = g Lo(rin) = ~2Re (+"P5 Do) (a%)] 9

It is seen that the gradient is estimated by measuring
the crosscorrelation at the output of two filters, A¥ and
DE Pﬁf applied to signal vector r. To obtain a practical
TED we are interested in the asymptotic form of these two
matrices as the number of symbols L approaches infinity.
For large I, the adjacent central rows of A¥ differ asymp-
totically in a time shift equal to a symbol interval, and
they correspond to the impulse response of a zero forcer.
The same asymptotic behavior is found for matrix DX Pﬁf,

whose central rows converge to a specific shape. As a conse-
quence, the matrix-by-vector operations A¥r and D Pﬁfr
in (8) can be viewed as time-invariant filters whose outputs
are decimated at one sample per symbol, and then multi-
plied in a symbol-by-symbol basis to yield the timing error
indication. The impulse response of these filters is com-
puted as follows:

ge(t) <« central row lim A?

— o

do(t) + central row Llim D¥pPy. (9)

The final structure of the asymptotic CML TED is shown
in figure (1).
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Figure 1: Structure of the the new CML TED and the
illustration of the absence of self noise.

The obtained CML-TED is similar in structure to the
classical ML-oriented TED [1] derived under the uncondi-
tional model assumption, i.e., by assuming the symbols are
independent random variables of a density function depen-
dent on the signal constellation, and modelling the signal
phase as a uniform random variable. The only difference
with the classical ML-oriented TED structure is in the defi-
nition of the two branch filters. These filters will be referred
to as Whitened Matched Filter (WMF) (g.(t)) and Or-
thogonal Derivative Matched Filter (ODMF) (d.(t)). The
main advantage of the new solution is that, in contrast to
the Derivative Matched Filter (DMF) used in the classical
structure, the ODMF does not generate self noise because
its output in the noiseless case is DH Pﬁf A;x =0 in the
absence of timing error, as illustrated in figure 1 by the zero
strobe samples at the ODMF output.



4. TRUE CRB FOR TIMING RECOVERY

Under the unconditional model assumption, the derivation
of the CRB poses insuperable obstacles. An alternative
bound is the modified CRB which yields [3]:

1 T2
872L¢ Es/N,

where £ is an adimensional coefficient depending on the
shape of g(t):

MCRB (r) =

(10)

S TGN df
JEL G df
For comparison purposes, it will be useful to express the

previous coefficient in the discrete-time domain using the
Parseval theorem:

£ (11)

T 2
=~ _Td 12
= g T 1do(7)] (12
It is demonstrated in [3] that the MCRB is generally lower
than (at most equal to) the true CRB:

CRB(7) > MCRB (1) (13)

In the sequel, we derive a new bound under the con-
ditional model assumption, by using the high amount of
research effort in the field of array processing theory. In
the context of DOA estimation using sensor arrays, Stoica
and Nehorai [4] derived the Conditional Cramer-Rao bound
(CRB.), which for the problem at hand can be expressed

as: 2
[ea

CRB. (1) = 2xHD§PﬁTDTx (14)
It is noted that the conditional CRB depends on the spe-
cific symbol sequence x. This may be useful for evaluat-
ing the ultimate performance of timing estimators designed
for burst mode applications, when an specific finite-length
preamble is used for initial timing recovery. However, in
most cases we are interested in the best performance that
can be attained by a timing estimator operating in continu-
ous mode. In that case, the statistical properties of the data
should play a fundamental role. To obtain an asymptotic
performance bound we note that the denominator of (14) is
a consistent estimate of the energy of x with respect to the
matrix DH Pﬁf D.. Therefore the asymptotic conditional
CRB is given by [4]:

2

as _ g
CRB:(7) = 3 (DFPL D.T) (15)
where:
L= Fy [xxH] (16)

is the covariance matrix of the symbols. Under the standard
assumption that the symbols are zero-mean independent
random variables (T' =¢2T), we can write:

0.2
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After some manipulations we obtain the following expres-
sion:

CRB® (1) =

1 T°
- 87T2L§c Es/No

where & is an adimensional coefficient depending also on
the shape of g(t):

CRB® (1) (18)

T2 T, 2
.= =3 [Px.din)| 1
&= om0 |[PA-4) (19)
The significance of the new CRB for the timing estimation
problem obtained in (18) is twofold. On the one hand, it
holds that:

A= &< (20)
£
L implying that:

CRB® () > MCRB (1) (21)

which means that the new bound is more accurate than
the modified CRB. On the other hand, Stoica and Nehorai
showed [4] that, although in general the CRBZ® (1) cannot
be attained, it converges to the true (unconditional) CRB
when the SNR increases or the dimension M of the signal
vector r increases. While in the context of sensor array
processing the dimension of M is equal to the number of
sensors (and it does not depend on L) in the context of
timing estimation, M is the dimension of the signal which
increases in proportion with the number of symbols .. For
that reason, the new bound derived in (18) converges to the
true CRB for large L. Therefore, the coefficient Ay in (20)
for L. — oo measures the department between the modified
CRB and the true CRB.

Figure (2) shows the evolution of A; as a function of
the roll-off parameter for increasing L. It is seen that the
most difficult situation for the timing estimation is in the
lower range of the roll-off parameter. Although this fact is
already reflected by the classical coefficient £ in (12) (which
is sensitive to the second order moment of the signal spec-
trum), the new coeflicient . = £ in (19) shows a stronger
dependence with this parameter. While £ measures only the
degree of detectability of a single pulse in noise, &. takes also
into account the fact that the L pulses are received with a
certain degree of overlapping, which is higher for smaller
roll-off. In the classical (UML) approach, this fact is not
considered due to the heuristic approximations adopted. As
a result, the obtained estimator is affected by self noise
(non-zero strobe samples at the DMF output) and the as-
sociated performance limit (MCRB) is optimistic. We have
seen that the CML formulation solves this limitation, mak-
ing unnecessary to resort to ad hoc prefiltering techniques
[8] for explicitly cancelling the self noise.

5. SIMULATION RESULTS

Numerical results are presented here to demonstrate the
tracking performance of the CML TED compared with the

INote that the only difference between (19) and (12) is a
projection operation which will never increase the norm of vec-
tors d;(7). On the other hand, these norms are all equal:
ld:i(D]I? = [|do(r)||* ¥ ¢ and not dependent on 7.
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Figure 2: A1, as a function of the roll-off .

classical ML-oriented TED (UML TED). Figure 3 shows
the normalized (with respect to T2) timing variance as a
function of E,/N,. Modulation is QPSK and the overall
channel response is Nyquist with roll-off =0.2 respectively.
In both cases a loop bandwidth of 5- 1072 is chosen, which
corresponds to an effective memory of I = 100 symbols.

It is seen that the CML TED attains the CRB at high
E, /N, while the classical ML-oriented TED (or UML TED)
has a floor timing jitter due to self noise. In contrast, the
CML TED shows a variance penalty in the lower range of
E,/N,. This penalty is higher for small excess bandwidth
(roll-off), which is the case of higher department between
the MCRB and the CRB. For different roll-off parameters,
the department between the CRB and the MCRB is differ-
ent, according to the factor Ao (see figure 2).

6. CONCLUSIONS

In this paper, the concept of conditional ML and conditional
CRB, well known in the context of sensor array processing,
have proven useful in timing synchronization. It leads nat-
urally to a timing error detector structure which is free of
self-noise, without requiring any approximation nor heuris-
tic approaches. The CML timing error detector has the
same structure as that of the ML-oriented estimator, where
the matched filter is replaced by the whitened matched fil-
ter and the derivative matched filter is replaced by the or-
thogonal derivative matched filter. The conditional model
assumption has also allowed the computation of the true
CRB, thus making unnecessary the use of the classical MCRB
approximation.

The future work will focus on the extension of the theory
to non-linear and staggered modulation formats.
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