MINIMIZATION OF WEIGHTED SENSITIVITY FOR 2-D
STATE-SPACE DIGITAL FILTERS DESCRIBED BY THE
FORNASINI-MARCHESINI SECOND MODEL

Takao Hinamoto, Akimitsu Doi and Shuichi Yokoyama

Faculty of Engineering, Hiroshima University
Higashi-Hiroshima 739-8527, Japan
hinamoto@ecl.sys.hiroshima-u.ac.jp, doi@ecl.sys.hiroshima-u.ac.jp

ABSTRACT

This paper considers the problem of minimizing the
weighted coefficient sensitivity for 2-D state-space digi-
tal filters described by the Fornasini-Marchesini (F-M)
second model. First, a simple technique is presented
for obtaining a set of filter structure with very low
weighted Lj/Lo-sensitivity. Next, an iterative proce-
dure is applied to obtain the optimal coordinate trans-
formation that minimizes the weighted Ls-sensitivity
measure. This is based on the matrix Riccati differen-
tial equation. Finally, a numerical example is given to
illustrate the utility of the proposed technique.

1. INTRODUCTION

Over the past decade, several techniques have been
proposed to synthesize 2-D state-space filter structures
that minimize the coefficient sensitivity [1]-[6]. Here,
2-D state-space digital filters are represented by either
the Roessor model [1]-[3] or the F-M second model [4]-
[6]. In [1],[4] all the frequency regions are treated uni-
formly, whereas the others are interested in the sensi-
tivity behavior of a transfer function within a specified
frequency range. To evaluate the weighted sensitivity,
a pure Ly norm is used in [3],[6] instead of a mixture of
Li/Ly norms. The La-sensitivity minimization is more
natural and reasonable but technically more challeng-
ing than the conventional Ly /Ly mixed sensitivity min-
imization. In [6], Li has employed a gradient-flow-based
optimization technique to minimize the weighted Lo-
sensitivity. However, the drawback of this algorithm is
that the convergence rate is very slow.

In this paper, the problem of minimizing the coef-
ficient sensitivity within a specified frequency range is
treated for 2-D state-space digital filters described by
the F-M second model. Unlike the method reported in
[5], no constraint on the weights of the various terms

of the mesure is imposed. A simple technique is pre-
sented for synthesizing the 2-D filter structures with
very low weighted L /Ls-sensitivity. This will serve as
an initial estimate in the iteration process. An itera-
tive procedure empolyed for minimizing the weighted
Ls-sensitivity is based on the matrix Riccati differential
equation that was initiated in [7] for the 1-D case.

2. WEIGHTED SENSITIVITY ANALYSIS

Let a 2-D stable, locally controllable and locally ob-
servable state-space digital filter be described by

w(i+1,j+1) = Ajw(i,j+1)+ Asz(i+1,7)
+biu(i,j+ 1) + bou(i + 1, 5)
y(i,j) = cx(i,j) +du(i, j) (1)

where x(7,7) is an n x 1 local state vector, wu(%,j) is
a scalar input, y(7, ) is a scalar output, and A;, As,
by, bs, ¢, d are real constant matrices of appropriate
dimensions. The transfer function of (1) is given by

H(z,2z2) = ¢ (In — zl_lAl — zz_lAz)_l
(271by + 25 g) + d. (2)

The weighted sensitivity functions are then defined
as [3]

6H§2’Z2) = WA(Z1,22)'8H;2’Z2)
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where Wy (z1,22), Wp(21, 22) and We(z1, z2) are three
stable, causal, scalar rational functions of the complex
variables z; and z5. Let

Wa(z1,22) = Wi(z1, 20)Wa(21, 22) (4)



be a factorization of W4 (21, z2).

Let X(z1,22) be an m x n complex matrix valued
function of the complex variables z; and z3. The L,-
norm of X(z1, z2) is defined as
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where I'? = {(21,29) : |21] = 1,]22| = 1} and
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Then, the overall weighted sensitivity measure can

be defined by either of
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Defining
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the upper bound of (6) is written as
M1/2 = QtI'[Kol]tI'[Kcz]
+2tr[K,p] + tr[K.¢] (8)
where my /5 < My/5. Alternatively, (7) is expressed as
me = 2tr[K 4] + 2tr[K,g] + tr[ K .c]. (9)

Here K., K.o, K,5, K.c and K, are called the
weighted Gramians and can be obtained by the fol-
lowing general expression :

K = ﬁ]{]{ﬂzl,zz)w(m,zz)dzcjjz (10)
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Y(Zl,zz = WA(ZlaZZ) (21,22)Ft(21,22),

respectively.

3. WEIGHTED [,/L;-SENSITIVITY
REDUCTION

Applying the coordinate transformation Z(i,j) =
Tt x(i,j) to (1), we obtain new coefficients

A, =T 'AT, b, =T 'b,, ¢=¢cT (11)

and new weighted Gramians

Ko =TKnT, Ko=T 'K,T™'
K, =T'K,pT, K.c=T 'K..T" (12)

This makes it possible to write (8) as
Ml/Z(P) =

where P= TT® and

J(P)+ L(P) (13)

J(P) 2tr[ K,y P]tr[K .o P~ 1]
L(P) = 2t[K,pP]+tr[K.cP™'].

The extrema of J(P) satisfies

aJ(P
% — 2(tr[K..P K.,

—tr[K, 1 PP K.oP™') = 0. (14)
All the solution of (14) take the form
where Pj 1s the unique solution of PK ,y P= K given
by
P, = K;f [Kgch2K§1]%K;15 (16)
and p is an arbitrary positive number. Moreover, J(P)

has the single extremum described by

JO= J(pPy) = 2 (tr[K o1 Py))? = 2 (tr[ K2 Py 1])?
—2 (tr[KczKol]% )2 =23 o) (17)

i=1
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where 0' ,t=1,2 .-, nare the eigenvalues of K., K.
Substltutmg (15) into (13) and using (17) gives

n

Mip(P) = 2()0:)" +2p ta[K,p Py]

i=1
+p e[ K. P (18)
Here, the arithmetic-geometric inequality says that

2ptr[I(oB-Pb] + p_ltr[KcCPb_l]

> 2\/20[K, s PJu[K.cP7Y] (19)



where equality is valid if and only if

tr[K.c P *
p= M (20)
Qtr[KoBPb]

Substituting (20) into (15) yields

tr[K.c Py ']

P =
Qtr[KoBPb]

P, (21)

Moreover, substituting (20) into (18) yields equality in
(19) and

M/5(P)
= 2 l(z o) + \/Qtr[Kong]tr[chPb_l] ] .
i=1
(22)
4. WEIGHTED /[,-SENSITIVITY
MINIMIZATION
Applying Parseval’s relation to (9), we obtain
k=0i+j=k
+2tr [K,g] + tr [K.c] (23)

where M4 (%, ) can be derived from (10). By carrying
out the state-space coordinate transformation, (23) is
changed to

mo(P) = 2t | S 3 PMa(i, )P MY (i, J)
k=0i+j=k
+2tr [PK,5] + tr [K.cP'] (24)

where P is defined as in (13).
Differentiating (24) w.r.t. P yields

omo(P
B _ g pRpPt (25)
oP
where
k=0i+j=k
+2KOB
RP) = 2> > Mi(i,j)PMa(i,j) + K.c.
k=0i+j=k

An iterative method for computing the limiting so-
lution of the matrix Riccati differential equation was

originally employed to minimize the Lo-sensitivity for
1-D case [7]. Applying it to the minimization of (24)
provides

P, = P +2FP)/a- [P+ FP)/d]

[2P; + F(P;)/a + o E~' (P
[P + F(P;)/o] (26)
where « > 0 is any scalar constant and P; is the solu-
tion of the previous iteration and the initial estimate
Py is given by (21). This iteration process continues

until
| Mo (Pi1) —2(P) [ <e (27)

where € > 0 is a prescribed tolerance.
Once the optimal P is obtained, the optimal coor-
dinate transformation matrix can be constructed as

T=PU (28)

where U 1s any n X n orthogonal matrix.

5. AN ILLUSTRATIVE EXAMPLE

Let the LSS model (1) be specified by

[ —0.05441 —0.30243 —0.17978 |

A = 0.24801  0.17827 —0.61119
| —0.12387  0.19389  0.86071 |
0.67444  0.02136 —0.09449 ]

A, = | —0.07846  0.87476  0.73312
| 0.03742 —0.26273 —0.00523 |
6.59099 2.82259

b, = | —18.72488 b, = | —10.17446
12.57083 7.35410

c= 107459 1.53783 1.80520 ]

and let
Walz,z2) = 3> wli,j)eyizy?
0<i+5<20
0.1+0.1527 1 4+ 015251
Wg(z,z =
571, 2) 1— 0327 — 03z
0.1+ 0.0527 " 4 0.0525*
Welz, 2z = L 2
c(a1, 22) 1— 0427 — 04z, "
where

2
w(iy, iz) = 0.256322exp [—0.103203 > (i — 4)°
k=1

and it is assumed that Wi(z1,22) = Wa(z1,22) and
Wz(Zl,Zz) =1.



Method by (26) (c:=100)
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Fig.1. Performace of the convergence by applying (26).
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Fig.2. Performace of the convergence by applying
the method reported in [6].

TABLE 1
NUMERICAL RESULTS IN THE APPLICATION
OF (26).
(a) @« =50 (b) a =100

0| 9274.9705 0| 9274.9705

1 | 9019.4565 1| 9013.2938

2 | 9009.0366 2 | 9007.8728

3 | 9007.7977 3 | 9007.6001

4 1 9007.6074 4 | 9007.5728

5 1 9007.5750 5 1 9007.5687

The intial estimate Py was analytically obtained by
using (21). Then (26) was used to minimize (24) iter-
atively. The performance of convergence is drawn in
Fig.1 and the relations between ¢ and 7s are summa-
rized in Table I numerically. In addition, Fig.2 is given
to compare it with the case of using the method re-
ported in [6] where the same intial estimate was used.

From these figures it is observed that the convergence
rate of (26) is much faster than the case of using the
method reported in [6].

6. CONCLUSION

For 2-D state-space digital filters described by the F-
M second model, an analytical method has been pre-
sented to synthesize the 2-D filter structures with very
low weighted L1/Ls mixed sensitivity. Then an itera-
tive procedure based on the matrix Riccati differential
equation has been applied to synthesize the 2-D filter
structures with minimum weighted Ls-sensitivity. The
results of a numerical example have shown that the con-
vergence rate of the above iterative procedure is much
faster than that reported in [6].
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