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ABSTRACT 

In this paper, a gain-adapted speech recognition in unknown 
noise is developed in time domain. The noise is assumed to be 
the colored noise. The nonstationary autoregressive (NAR) 
hidden markov model (HMM) used to model clean speeches, 
The nonstationary AR is modeled by polynomial functions with 
a linear combination of A4 known basis functions. Enhancement 
using multiple Kalman filters is performed for the gain contour 
of speech and estimation of noise model when only the noisy 
signal is available. 

I. Introduction 

The autoregressive hidden markov model (ARHMM) [ 1,2] is 
useful method to represent clean speeches in speech recognition 
and enhancement. In the conventional ARHMM, individual 
states are assumed to be stationary stochastic sequences. Since 
speech sounds, such as fricative, glides, liquids, and transition 
regions between phones, reveal the most notable nonstationary 
nature [3-51, we can not expect to obtain better performance by 
the conventional methods based on the above assumption. 
Another basic issue of ARHMM is arising from speech 
recognition, when only noisy speech signals are available. It is 
an estimation problem of unknown noise, and a matching 
problem of the energy contour of signal to the model for the 
same signal. 

To overcome these problems, the gain adapted speech 
recognition with an NAR-HMM and noise estimation is 
presented. The NAR-HMM used to model clean speeches and 
the parameter of nonstationary AR model were the linear 
combinations of M known basis functions. Then, the speech 
signal is blocked by samples into fixed-length frames. Our 
model is formally very similar to the trend HMM [3,4], but it is 
designed to handle speech signals at the frame level, where it is 
represented by signals rather than dealing with feature vectors 
directly. Also, for M=O, the proposed model become to the 
conventional ARHMM [2]. When only the noisy signal is 
available, the gain adapted recognition algorithm with noise 
estimation are developed for the NAR-HMM using the EM 
approach and tested in recognition of noise speech. 
Enhancement using multiple Kalman filters is performed for the 
gain contour of speech and estimation of noise model 

II. NAR-HMM for clean speech 

Let y = {un, n = l...,T} be the sequence of clean signal 

vectors, where y, = {y(t), (n - 1)N + 1 Lt <nN} and s, E 

{l,...,L), be a sequence of states corresponding to V. Let 

g = {gn, n = I,.., T} , be a sequence of gain factors, or a gain 

contour, for the signal y. 
Then, at the n-th frame, speech signal conditioned on state j is 
expressed as a linear combination of its past values plus an 
excitation source with gain contour, as 

y(t)= 5 “cBkJ(mty(t-k)+g,.e,(t),(n-l)N+lm?N. (1) 
k=lm=O 

where BkJ (M) is the state-dependent frame-varying coefficients, 

e,(.) is the excitation source with state-dependent variance 

a;(n), N and n is the frame length and number, respectively, 

and g, 10 for all n is a gain term to take into account the 

mismatch between training data and testing data for clean 
speech models. 

We now turn our attention to the problem of estimating time- 
varying coefficients in our model. In order to gain insight into 
the behavior of the coefftcients and to make the estimation 
problem tractable, we choose to model them as a linear 
combination of A4 known basis functions: 

(2) 

where f,,,(n) represents the m-th basis function and Bi m the 

weight associated with the basis function. 
Here, we choose M=l and our basis functions to be such that 

fo(4=1, lGlT, 

fh)=n? Is2~T. 

Therefore, (1) may be rewritten by vector form as 

(3) 

y(t) = B’Y(t - I)+ g, y(t). (n-l)N+Ilt<nN (4) 

where BJ = BJ I BJ BJ BJ I.0 I,1 2.0 2.1 . . . B6,0 BL,l ] and 

Y(t - 1) = b((n - l)N +t-l),ny((n-l)N+t-l).., 

y((n-l)N+t-p). ny((n-l)N+t-p)]P. 

In essence, the model with time-varying coefficients has been 
transformed into one with time-invariant weights. The problem 
is now reduced to one of estimating 2P time-invariant 
parameters that completely characterize the behavior of the 
coefftcients. It should be noted that the choice of basis functions 



is by no means limited to polynomials. 
The likelihood of observation sequence y under the model 

il and gain contour g is calculated as 

Pnbld =n~,ili”-,.~“Pn(vnlSn.gn)~ (5) 

where a.sn-,5n denotes the transition probability from state at 

time n-l to state at time n, and the pn bnlsnpgn) is 

The parameter set A= by.B’ ,crj,i,j=l,..., L ) of the 

nonstationary ARHMM and gain contour g for clean speeches is 
estimated from training sequences of clean speech signals. Note 
that /z denotes the parameter set of the ARHMM for the gain- 

normalized signal. 

III. Training algorithm 

Gain-adapted training of the nonstationary ARHMM results 
from maximum likelihood (ML) estimation of the parameter set 
/1 and of the gain contour from a training sequence y. Then, /1 

and g can be estimated from 

mAfx m&y Pn bid (6) 

However, the gradient equations of pA(ylg) with respect to 

(,l,g) are nonlinear and therefore have no simple solution. 

Hence, the estimation of {/i, g} is performed here iteratively 

using the EM approach [6,7], maximizing the following 
auxiliary function: 

where X and A are current and new estimates of model 
parameter, respectively. 
Then, each iteration constitutes one EM iteration for estimating 
a value of ;1 given g and one EM iteration for estimating g 

using the resulting 2. 

0. Estimation of 1; 

As in standard HMM. we obtain the reestimation formula 

BJ = $ f. P~~(s,-, =i,s, = jly,g) 

[ 

? y(t-l)yT(t-l) 1 
-1 

r=ln=l I=(n-1)N+l 

. $5 pnf(s,-, = i,s, = j1y.g) 
I 

’ (9) 
,=ln=l 

4; $pnf(s,,-I = i,s, = jly,g) 

a? = ‘=ln=’ 

$b(t)- B’u(t-l))2 
t= n-l N+I 

/ 
4: ~p,&,-~ = i,s, = jly.g) 
1=ln=l 

(10) 
where the probability pA,(sn-t = i,s, = jly,g) can be calculated 

v(t) efficiently by the forward-backward algorithm. y(t) = g, . and 

@-])= Y(t-0 - Yb1) Y(t-2) YC-2) n- - n- . . . 
&I gn &I gn 

Y(‘-P) h-d I‘ -fl- . 1 Note g n is a gain factor of the n-th 
gn &I 

frame. 

If M is set to zero, then (8)-( 10) reverts to the reestimation 
formula for the Gaussian mean vectors in the standard 
ARHMM. 

0. Estimation of gain contour g; 
Next, for estimating the gain contour g , assume that il is 

known. Similarly to what we have seen before, maximization of 
the auxiliary function over g results in an estimate of the gain 
contour g by setting the gradient of Q(;E,g) with respect to g to 

zero. We arrive at the following gain reestimation formula 

The iteration process starts with initial gain contour g; = 1 for 

all n, and repeats until either a fixed point R = R’, g, = g; is 

reached or the difference in likelihood in two consecutive 
iterations becomes sufftciently small. 

IV. Noisy Speech recognition 

When only the noisy speech c=y+v is available, where 
z={~,,,n=l,.., T} and v={v~,n=l,.., T}, gain factor of 

speech would be estimated from noisy speech by matching the 
energy contour of the test clean signal to that of the model for 
the same signal. The noise model assumed here is a nonwhite 
stochastic AR of order q: 

v(t) = cyt - I)+ g,w(t), (12) 

where v(t - 1) = [v(t - I), . . ..v(t - q)y . C = [q , . . ‘,q, r are the 

AR parameter vector of the noise process, g, represents its 

power, and w(t) is white Gaussian process with zero mean and 

unit variance. Since the noise parameters C and g, are 

unknown a priori, also, they must be estimated within the speech 
recognition algorithm. 

Given the model /z from clean speech, the likelihood of the 

noisy speech z under the noise model 4, = {C,gy} and gain 



contour g is calculated as 

pn(z(gJJ = c SP~(~~YJl&)d.~ (13) 

where 

PI(S~Y.LIR.~)=nifiU~~~,~“P~GinlSn.g~~~)P~(z~ -Yd 

Then, g and /\” can be estimated from 

n$yA(;/gA). (14) 

The gradient equations with respect to g and aV are nonlinear 

Hence, ML estimation of g and A, is performed iteratiVdY 

using an auxiliary function, 

(15) 

(16) 

At state S, = j , we will use the notation 

(f), = E{.lz,s, = j,g’). (17) 

From the gradient equations of Q(I,,,g) with respect to g and 

,I,, we get the following reestimation formula: 

c, = 4;,,(s, =j\z,g’) 

[ 

-1 
r=(n-l)N+l 

Y,(t-1)P,‘(t-1) 
,=I 1 

where g’ is the gain contour estimate obtained at the priori 

iteration and JJ~(.s, = .I j z,g can be efficiently calculated using I) 

the forward-backward procedure [2]. For initial condition of 
noise model & at frame n=l, we can estimate /IV from 

segments of the signal where no speech is detected and at n>l, 

Step-O: Initialization: For given parameter 

I=b,,BJ ,gf,i,j=l,.., L, g=l,and E, 1 

evaluate p~(zlg,&,g,)and I=O. 

Step-l : Calculate the posterior probabilities 

PnGnlW) for s, =l,.,, Land PI=],..., T, 

Step-2: Speech enhancement: Calculate the x,(f),?,‘(l) 

by (23)-(26), 
Step-3: Estimation of gain factor and noise parameter: 

estimate gl+] and I,, using (18)-(20). 

Step-J: If p,t(zlgf+l.A,,+l)- p,t(+a&)~ 6. 

assign ;yp~(zlg,S)= Pn(zlg,+lJ,,,+,) and stop 

Otherwise, set I+ I + 1 and goto Step- 1. 

we use II” obtained from the (n-1)-th frame. 

In (18)-(20), E{.Iz,s,, = j,g’} can be obtained from the Kalman 

filter with state S, = j as [IS], following the state-space form: 

X(f) = Q(j)X(f - 1) + Gr, (f) , (21) 

Z(f) = H%(f) (22) 
where 

X(f)= b(f)...y(f-J+(f)... v(t-q)]T, q(t)= [e,(t) w(f)p, 

G, = HYT = [LO]. G, = H,’ = [lO...O], 

Bj’,,,+&:,n 0 

I ’ 1 0 ’ 

The estimator i,(t) on the state S, = j can be obtained from 

the conventional Kalman filtering as 

i,(t)=Q(j)ri/(t-1) +K,.b(t)-H’@(j)k,(t-l)), (23) 

M,(t)= @,di)P,(t- INTO) + GQ(j)GI‘, (24) 

K,(f)= M,(t)H[H’M,(t)Hr’, (25) 

p,c>= ~,wwf~,(4. (26) 

where Q(j)= E[j(f)rJT(f)]. 

We note that yJ2 (t), f, (f - l)f,‘(t - l), y, (f)f, (f - l), G,2(f), 

I’, (f - l)@,‘(f - 1) and v, (f)?,T (f - 1) of (18)-(20) may similarly 

be extracted from i, (t)iJT (f) . 

The algorithm for local maximization of Pn(zlg,I,,)over g and 

/1, can be summarized as follows; 



Finally, the decision rule for noisy spoken word is 

(27) 

where W is number of the total word for speech recognition. 

V. Experimental Results 

We have evaluated our new method on a base of ten isolated 
Korean digits with three versions of each digit pronounced by 
seven male speakers. Only 50 speech data of five speakers have 
participated in training and other 160 speech data have been 
used for test. This speech data were sampled at 1OkHz and 
modeled by state L=5 and the AR order of 15. Training and 
recognition were performed on nonoverlapping vectors of the 
speech word whose dimension was N=256. In these 
experiments, the effects of adding Gaussian colored noise were 
studied. For the noise, we used the car noise. Then, the model is 
assumed to be AR with the 8-th order. 
The gain adapted recognition method with noise estimation was 
compared to an approach without noise estimation. Recognition 
results in noise are given in Table 1. From this result, noise 
estimation of the proposed method is sufficiently good to 
improve recognition in noise. Up to four iterations of the noise 
estimation algorithm were used. Table 2 shows a result of 
comparison on the conventional ARHMM with noise estimation 
and the proposed method with gain adaptation (in this case, 
conventional method is equal to proposed method with M=O). 

VI. Conclusions 

The gain-adapted speech recognition when the noisy signal is 
available is developed in time domain. The noise is assumed by 
the colored noise. It uses the NAR-HMM to model the clean 
speech. The nonstationary AR is modeled by the polynomial 
function with linear combination of A4 known basis functions, 
The gain adapted recognition algorithm with noise estimation 
are developed for the NAR-HMM using the EM approach and 
tested in recognition of noise speech. Enhancement is 
performed by the application of multiple Kalman filters formed 
from speech and noise estimates to each frame. Simulation 
results presented for the additive stationary colored noise show 
the proposed method to be effective. 
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Table 1. Recognition results in noise 

with noise 
estimation to/) 

0 I I 15 

15145 91 

10 70 93 

15 75 95 

20 85 97 

Table 2. Recognition results in noise 

SNR 
dB 

0 

5 I 10 

15 

20 

85 87 

87 89 

90 93 

93 95 

95 97 


