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ABSTRACT 

This paper deals with the separation of two convolutively 
mixed signals. The proposed approach uses a recurrent 
structure adapted by a generic rule involving arbitrary sep- 
arating functions. These functions should ideally be set so 
as to minimize the asymptotic error variance of the struc- 
ture. However, these optimal functions are often unknown 
in practice. The proposed alternative is based on a self- 
adaptive (sub-)optimization of the separating functions, per- 
formed by estimating the projection of the optimal functions 
on a predehned set of elementary functions. The equilib- 
rium and stability conditions of this rule and its asymptotic 
error variance are studied. Simulations are performed for 
real mixtures of speech signals. They show that the pro- 
posed approach yields much better performance than clas- 
sical rules. 

1. PROBLEM STATEMENT AND CLASSICAL 
RESULTS 

Multichannel blind (or self-adaptive) source separation is 
a basic topic in signal processing. It aims at extracting 
unknown independent signals (the so-called sources) from 
sensor observations that are unknown linear mixtures of 
these sources. A commonly used model corresponds to 
a two-dimensional mixing system defined by the following 
source-observation relationship: 

YI(z) = S,(t) + An(r)&(z) (1) 
Yz(z) = Ax(z)Xl(z) + X,(z), (2) 

where Xc(z) and Y, (2) are respectively the Z-transforms of 
the source z,(n) and observation y,(n). A,, (2) is the un- 
known transfer function of the channel that links source i 
to sensor i. The corresponding impulse response is denoted 

(at, (k))&Z hereafter. The mixing system is assumed to be 
minimum-phase (i.e. to be causal and stable and to have a 
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Figure 1: Recurrent convolutive source separation system. 

causal and stable inverse). Moreover, the sources ~1 (n) and 
zz(n) are assumed to be stationary, zero-mean and statist- 
ically independent. 

HCrault and Jutten [5] proposed one of the very first 
solutions to this problem in the case of intantaneous mix- 
tures (i.e. Atj(.z) = 0,~(0) for z # j E (1, 2)). A natural 
extension of this solution for convolutive mixtures was then 
derived by Nguyen and Jutten [6]. Their approach is based 
on the recurrent structure shown in Figure 1. where the sep- 
arating filters C,,(z) are assumed to be Mth-order Moving 
Average filters. The associated coefficients (~~~(k)),,<~<~ 
are updated using the rule: 

- - 

c,,(n + 1, k) = GJ(“,k) + LJf(%(n))dsl(n - k)) 

z#jE{1,2~,~ElO~~l, (3) 

where p is a positive adaptation gain and f and g are two 
possibly nonlinear (most often odd) functions. The partic- 
ular case (f(X),g(z)) = (x3,5) was experimentally invest- 
igated in [6] but no theoretical results were provided neither 
on the stability of (3) nor on its asymptotic behaviour. 



2. SUMMARY OF OUR PREVIOUS RESULTS 

More recently [2]-[4], we proposed a first extension of (3) 
that reads: 

C,j(rl + 1, k) = c,,(T k) + di(st(n)k7t(sJn - k)) 

i # 3 E {1,2), k E LO, Ml, (4) 

where ft and g, are arbitrary functions, except that they are 
requested to meet the condition 

a71 (21 )I = 07 i # j E {1,2}. (5) 

This condition is related to the state of interest of the sys- 
tem, i.e. to the values of the separating filters which yield 
separated sources at the system outputs. This state is called 
the separating state below and may be shown to correspond 
to: 

C,,(z) = At,(z), * # j E (1,211 (6) 
which yields S,(t) = S,(z), i E {1,2}. The condition (5) is 
then set in order to ensure that this separating state is an 
equilibrium point of the rule (4). The stability analysis of 
(4) at the separating state and for independent identically 
distributed (i.i.d) sources is provided in [4], while its asymp- 
totic behaviour is investigated in [3]. In the case of stricly 
causal mixing and separating filters (i.e. aiz(0) = 021(O) = 
~12 (0) = c2r (0) = 0), we thus derived the expression of the 
asymptotic error variance of the separating system, defined 
as grn = Kym E[IO, - O’I’] where 

On = [c~(n, l), . ,c12(n, M),c2i(n. l), . . ,c2i(n,M)IT 

(7) 
defines the system state at time n and 

6'" =[~12(l),...r(112(~~),a21(l),...,a21(M)]T (8) 

is the separating state (as (8) is then only an explicit form 

of (6)). 
As shown in [2],[3], the minimization of croo suffers from 

a multiplicative ambiguity, that can be removed by using 
the normalized rule that we proposed, i.e: 

c,,(n + 1, k) = ct,(n,k)+p 
fi(sl(n)) sI(sJ(n - k)) 

drn @iim 
i # J E {1,2},k E [LM]. (9) 

The optimal separating functions (i.e. the ones which min- 

imize a,) are then: 

p:, (xl 
f-T4x) = --v,1 p,,(x)) 

gropt(2) = VI2 x, (11) 

where pt. is the p.d.f (probability density function) of the 
source x,, and vii and Y,Z are arbitrary’ real constants, 
which have no influence on the resulting rule (9). 

‘They should have the same sign to ensure the stability of the 
separating state. 

We also extended this approach [3] to the case of possibly- 
coloured signals corresponding to AR processes, i.e. to 
sources defined in the Z-domain by: 

x (-) = TJz) t - 
zzy 

2 E (1, a}, 

where B,(z) represents the Z-transform of a causal and 

minimum-phase qt th-order filter, i.e. B, (2) = k b; (k)z-‘; 

k=O 

(with i,(O) = l), and where z,(n) are i.i.d. signals called 
the (normalized) innovation processes of the sources. In 
this case too, the rule (9) is used, except that s, (and 3,) is 
replaced by its adaptively estimated innovation process u,, 
computed according to: 

v,(n) = s,(n) + eb.(n, k)s,(n - k) i E (1. Z}, (13) 

k=l 

where the coefficients (b,(n, k))kE[l,g,l of the MA whitening 

filter are updated by a LMS rule with gain y: 

b,(n + 1, k) = b,(n, k) - yvl(n)s,(n - k) 

i E {1,2}, k E [La]. (14) 

An asymptotic behaviour analysis [2] shows that the op- 
timum class of separating functions is then: 

ftapt(x) = --vzl !L& 
2, 

gtopr(x) = vt2 5. (16) 

3. DEFINITION AND THEORETICAL ANALYSIS OF 
A NEW APPROACH 

In this section, we still consider the case of the separation 
of two AR processes mixed through stricly causal filters. 
The implementation of the above-defined optimum separ- 
ating functions fiopt requires the p.d.f pa, of the whitened 
versions of the sources to be known. Unfortunately, this 
turns out to be an unrealistic assumption in most cases. A 
natural solution to this problem is the estimation of these 
p.d.f. However, this approach is computationally expensive, 
hard to use in real-time applications and difficult to extend 
to the case of non-stationary sources. An attractive altern- 
ative is therefore proposed hereafter. It consists in having 

the separating system automatically determine sub-optimal 
estimates of these optimal separating functions. This can 
be achieved by estimating their optimal projections on a set 
of elementary functions (polynomial functions for instance). 
Hence, the contribution of each separating function fl in 

the extension of (9) to coloured signals, i.e. 

replaced by h,(x) = c Wktltk(x), where (+‘lk(Z))k,&L] is 

k=l 

a set of continuously derivable functions that define the pro- 
jection space and (Wlk)ke[l,L] is a Set of SCahr coefficients 

associated to ($bk(z))kE:[I,Ll. When setting the functions g, 



to their optimal values defined in (16), the source separation 
rule thus obtained reads: 

G](ra + 1, k) = c*,(n,k) +Ph.(“.(n))“l$$ 

i # 3 E {1,2),k E [L Ml, (17) 

still combined with (13)-( 14). 
The next step of this investigation consists in analyzing 

the theoretical properties of the new algorithm thus intro- 
duced, and especially in determining the optimum values 
of the coefficients (~~k)~e(r,~). To this end, we first refor- 

mulate in vector form the overall set of rules defining the 
adaptation of all the parameters of the considered system, 
i.e. (14),(17). This yields: 

0 n+1 = Q7z +dqQ”,En+l), (18) 

where En+, and H(O,, En+,) are column vectors derived 
from (14),(17) and where 

with 

eln = [Qz(n, l), . , c12(n, M), CZl(% I), . . ! C21(% WI, 

(20) 
ezn = [b,(n,l),...,bl(n,q,),bz(n,l),...,bz(n,92)]. (21) 

The equilibrium states of (18) are then the states 0’ that 

meet: 

Eo* [H(Q*,En-+l)] = 0, (22) 
where Ea. c] denotes the mathematical expectation associ- 
ated to the asymptotic probability law of the vector &+r 
for a given vector 0’. One can easily check that the separ- 
ating state defined by: 

with: 

0’ = p;‘, e;]‘, (23) 

0; = [adz,. . . ,a~z(M),az~(l), . ,m(M)], (24) 

9; = [idl), . . ~~&1),&2(1),. . .,6(!?2)1 (25) 

is an equilibrium point of (18). 
The stability analysis of (18) is based on the so-called 

Ordinary Differential Equation technique (ODE) [l], which 
approximates the discrete recurrence (18) by a continuous 
differential system that reads: 

dO 
- = & Eo[H(O,&+,)]. dt (26) 

The differential system (26) is locally stable in the vicin- 
ity of any given equilibrium point 0’ if and only if all the 
eigenvalues of the associated Jacobian matrix J(0’) have 
negative real parts. For any state 8, the entries of J(Q) are 
defined by: 

J,,(O) = lim 
8(Eo[H(O,Ent#) 

aoc1, ’ (27) n-++CC 

EQ[H(O, &+r)](‘) being the jth component of E~[H(O,&,tl)] 
and Ot’) the jth component of vector 0. Applying this ap- 
proach to the considered adaptation rule eventually yields 
the following stability condition at the separating state (see 
details in [2]): 

E[h:(&)] > 0. (28) 

The ODE asymptotic convergence theorem established 
in [l] is then applied to the algorithm (18). This shows 
that, for large n and a stable equilibrnun point O’, 0, is 
an asymptotically unbiased Gaussian estimator of 0”. Its 
covariance matrix is pF’ where P is the unique symmetric 
and positive definite solution of the Lyapunov equation: 

J(Q”)P + RF(W) + R(W) = 0 

where R(W) = c Cov[H(O”,t,+r), H(O”,[s)]. 

na 

(29) 

The overall asymptotic error variance of 0, is thus equal 
to liyW E[IO, - O’j’] = pTr(P). However, we are only 

interested in the eventual separation quality of the system 
outputs, and therefore in the asymptotic error variance re- 
lated to the estimation of the separating filters, i.e. go0 = 

lim 
n-++m 

E[jB1,,-0; I’]. It can be shown [2] that’ crco = p-ITr( p) 

where p is the unique symmetric and positive definite solu- 
tion of the Lyapunov equation: 

S(ef)P + P.F(e;) + R(ef) = 0 (30) 

where .I(@;) and R(B;‘) correspond to 2M by 2M matrices 
obtained by keeping the first 3M raws and columns of 0’ 
and R(W). Mathematical calculations then show that [2]: 

(31) 
where q,l and q,z are real constants that are only related 
to the mixing matrix. The minimization of crrx, has to be 
undertaken under three constraints. i.e. (28), E[ht(?,)] = 1 
and E[h,(5,)] = 0. The first one guarantees the stability of 
0” whatever the nature of the sources (e.g. sub- or super- 
Gaussian). The second one results from the fact that h,(r) 

stands for 
&k~ 

as explained above. The third con- 

straint is only used to reduce the complexity of the solution. 
This assumption makes sense since the optimum separating 
function (15) may be shown to be zero-mean, but it doesn’t 
ensure that the sub-optimal function thus obtained is very 
close to the optimum. This constrained minimization of uco 
leads to the following set of coefficients (w,k)kl,: 

d tk 
Wtk = WI1 - d k E [2,4 

I1 

2This result is obtained thanks to the lower-block-triangular 
structure of J(W). 



where dlk, k E [l, L], are the entries of the vector D, defined [d 

by: 

D, = ‘P,,‘r,, 
15 

if v, = 0, 20 
D, if K # 0, 

(33) 

L 25 
30 

where Q, is the matrix defined as: 
Table 1: Comparative performance for real mixtures 

and where: 

l-7 = [E[d:&)],. ..,E[d~(k)l]~. (35) 

I?- = [E[$u(&)], . . , E[$,L(~,)]]=. (36) 

Note that d,l was assumed to be non null above. If this 

(f,(z),g,(r)) E {(z,r), (x3,x)}. The second considered ap- 
proach is the new algorithm (17) introduced in this pa- 
per (again combined with (13)-(14)), with h,(z) situated 
in a 3-dimensional projection space (and therefore denoted 

h(3D)(z) hereafter). This projection space is defined by the 

following set of elementary functions: (sign(z Z, x3). 
The results thus obtained are summarized in Table 1. This 
shows that the proposed projection-based approach yields 
much better performance than the normalized rule operated 
with classical separating functions. It is also more robust to 
bad conditioning that may occur for small inter-microphone 
distances. 

assumption does not hold, a permutation of indices in the 
vector D allows to fulfill this requirement. 

5. CONCLUSION 

In practical implementations, the mathematical expectations 
in the above expressions are adaptively estimated using a 

In this paper, we defined and analyzed a new approach to 

classical first-order AR filtering algorithm, with 2, estim- 
convolutive source separation. It is based on a self-adaptive 

ated by v, [2]. Note that the choice of the elementary func- 
optimization of separating functions. This is performed by 

tions of the projection space may take a great advantage 
estimating the best projection of the optimum separating 

from the a priori knowledge that we may have on some 
functions on a given set of functions, with no restriction on 

characteristics of the p.d.f of the sources (sub-Gaussianity 
the nature of the sources. Simulations using real mixtures 

or super-Gaussianity for example). 
of speech signals show that this approach performs much 
better than classical rules. 

4. EXPERIMENTAL RESULTS 

In this section, we consider the realistic situation where the 
sources are two speech signals limited to the telephone band 
[~OOHZ-3400H.21 and where the mixing system results from 
acoustic propagation inside a room. The signals are emitted 
by two loudspeakers and picked up by an antenna made 
up of eight microphones, with 40-cm inter-louspeakers and 
loudspeaker-antenna distances, while the distance between 
adjacent microphones is 5 cm. 
The source separation accuracy is measured by the Average 
Signal to Noise Ratio Improvement defined as : 

where SNRZ, denotes the SNRI at output i defined as: 

SNR*t = lozoglo 
Eb(n) - zr(n))21 
E[(s,(n) - x,(n))2] 

(38) 

In these simulations, we compare the performance of two 
types of algorithms. The first one is the practical algorithm 
derived in Section 2, i.e. the adaptation rule (9) modified 

with the whitening algorithm (13)-(14) and operated with 
either of the following sets of classical separating functions: 

1 f*(r) = z ( f*(z) =x3 1 ft(z) = P)(Z) ] 
3.7 4.3 8.0 1 
5.2 5.1 9.1 
4.9 4.6 10.3 
4.8 5.7 10.0 
5.0 6.3 10.0 
5.4 64 1nn 

(ASNRI (dB) vs inter-microphone distance d). 
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