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ABSTRACT 

%o system identification techniques are proposed for dis- 

criminating between the type of timing jitter that perturbs the 
arrival time sequence recorded for an event-based process. 
A univariate point process is used to characterise the ob- 
served signal activity. The first jitter identification method 
requires a visual inspection of an estimate of the expectation 
density computed for the point process. The second method 
involves a statistical hypothesis test for a renewal process. 

1. INTRODUCTION 

IA {to, t1, “‘, tN-1) denote a sequence of N event ar- 
rival times observed for an event-based process. The time 
delays or inter-event intervals (IEIs) that separate successive 
event occurrence times are assumed to be nominally regular, 
but will vary from one interval to the next due to timing jitter 
that exists on the individual event arrival times. Examples of 
this type of process may be found in a number of application 
areas, including the driven and spontaneous spike train activ- 
ity recorded from a biological neuron [ 1,2], a series of radar 
pulses collected by a passive radar intercept receiver [3-51, 
and a sequence of zero-crossing measurements recorded by 
a communications system [4]. The observed variation in 

IEIs is modelled here according to a Gaussian distribution 
with the nth IEI. T, = 1, - L-1, distributed as N(T, us). 

Our analysis of the event-based process will focus on a 
study of the observed event arrival time sequence and this 
suggests a univariatepointprocess representation for the sig- 
nal activity such that the idealised events are distinguishable 
only by their occurrence times {to, ti, . . . , tN-1). Two jit- 
ter models will be used to describe the displacement in event 
arrival times relative to a strictly periodic series of events. 
The first model involves a non-cumulative jitter (NCJ) vari- 
able whereby the arrival time of an event is independent 
of the occurrence times of the events that precede it. The 

second model incorporates a cumulative jitter (CJ) variable 
such that an event arrival time exhibits a dependency on the 
preceding event occurrence time. 

The purpose of this paper is to investigate two novel ap- 
proaches for discriminating between a NCJ and CJ process 

for the signals of interest. The discrimination between the 

two jitter models is useful for signal identification and for 
revealing the nature of the underlying signal generating pro- 
cess. Optimal estimators have also been developed for the 
mean IEI and the timing jitter variance [5], but to yield op- 
timal performance the jitter model must be known a prioti. 
The jitter identification techniques described herein could 
therefore be used to pre-process the data and to identify the 
relevant jitter process before the parameter estimation tech- 
niques are applied. The first method that we consider for 
jitter discrimination involves an estimate of the expectation 
density for the point process associated with the observed 
event arrival time sequence. The second method is based on 
a statistical hypothesis test for a renewal process. 

2. EVENT ARRIVAL TIME MODELS 

Consider a regular event-based process with a set of N ob- 
served arrival times which also label the point events in time 
that we associate with some underlying point process. In the 
NCJ model, the nth event occurrence time is modelled as 

t, = tg + nT + a,, (1) 

where n = 0, 1, . . . , N - 1, T is the mean IEI, t+ defines 

the start time for the process, and o, is a NCJ variable with 
distributionN(0, crz). The {a~, al, . . , &N-i} represent 
a stationary sequence of independent and identically dis- 
tributed (i.i.d.) random variables. In the NCJ model the nth 
IEI is given by 

T, = t, - tn-lr 

= T+cY,, -(Y,-~, (2) 

with n = 1, 2, . . . , N - 1. In which case, T, is distributed 
as N(T, 2~:). Note also the dependence of successive 
IEIs on a common jitter variable which implies that the 
underlying process that generates the {Tl, Tz, , TN- I } 
is of the nonrenewal type. For the CJ model, the nth event 
occurrence time is given by 

2, = tn-l+T+Pn, (3) 

where to = &++Po, (4) 



n = 1,2, . . , N - 1, and 14 and T are as above. The 

{PO,Pl, .-.,P - } p N 1 re resent astationary sequence of i.i.d. 

random variables with&, aCJvariabledistributedasN(0, 6;). 
Observe that 2, may also be written as 

n 
t, =t++nT+ CL?,,,, 

m=O 

which demonstrates explicitly the accumulation of jitter 
from one event arrival time to the next. In the CJ model 

the nth IEI is given by 

T, = t, -t,-1, 

= T+Pn, (6) 

withn = 1, 2, . . . . N - 1. T, is therefore distributed as 

N(T, ug). The IEIs {Tl, Tz, . . . , TN-I} are also i.i.d. in 
the CJ representation and, by definition, may therefore be 
associated with a renewuf process. The amount of jitter 
on an event arrival time sequence will be quantified by the 
coefficient of variation, YT, defined for the random variable 

Tn, by 
[ir,+iJ]* = 9 

7T = E{T,} T’ 

where UT = d% for NCJ, 

“P for CJ. 

(7) 

(8) 

3. JITTER IDENTIFICATION FOR AN 
EVENT-BASED PROCESS 

3.1. Estimation of the Expectation Density 

The expectation density [2] or intensity function [6], denoted 
by m(T) for a point process series of events, provides a 
valuable analysis tool for investigating the properties of the 
process of interest and is formally defined by 

m(r) = lim 
Pr{event in (1 + r, t + T + 6~) 1 event at t} 

67+0 6r 
(9) 

The expectation density therefore relates to the conditional 
probability, m(r)&, that an event is observed in the small 
interval (T, 7 + ST] set after an event occurs at time 2. 

From [ 1,2], the expectation density for a point process may 

be constructed from the interval densities of the particular 
process under consideration. The probability density func- 
tion of the &h-order interval is denoted by rnk(r) and de- 
scribes the distribution of the intervals between the nth and 
(n + fi)th events. The first-order density, ml (T), for exam- 
ple, specifies the distributionof the IEIs {T, = 1, -1,-l}. 
The expectation density may then be constructed as fol- 
lows [ 1,2] 

00 

m(f) = C mk(T). 
k=l 

(10) 

We remark also that if T denotes the mean time interval 
between events, from [ 1,2] 

lim m(r) = f. 
7-m 

The rate at which this limit is approached is dependent 

on the process under investigation [ 1,2]. For a regular 

event-based process with NCJ the Cth-order intervals are 
distributed as N(kT,2ui), whereas for CJ they are dis- 
tributed as N(kT, kui). From Equation (10) the theoretical 
expectation density for a point process series of events as- 
sociated with each jitter model is given by 

C& & exp [ -1 for NCJ, 

m(r) = CE, * ev [ -1 for CJ, 

(12) 
where r > 0. The expectation densities for the processes of 
interest therefore take the form of a series of peaks centred 
on integer multiples of the mean IEI T. Inspection of (12) 

also reveals that for NCJ, the peaks in m(r) are of the same 
width and independent of the time delay T, whereas for CJ, 
the peaks become broader for increasing values of r. 

An estimate of m(T) may be obtained in an experimen- 
tal situation from a block of N recorded event arrival times, 
{to, tl, . . . , tN-1). by considering the time intervals be- 
tween pairs of events via 

in(f) = f NgNE16(l,+k - ha - T), (13) 
n=O k=l 

where a(.) denotes the Dirac delta function. In practice, a 
histogram is used to obtain a smoothed estimate of m(T) 
by binning the N(N - 1)/2 event arrival time differences 

generated from the application of (13). If Nj corresponds 
to the number of time intervals between pairs of events that 
fall into the jth histogram bin based on 

(j - l)A I (tn+k - tn) < jA, (14) 

where A denotes histogram bin width, an estimator for the 
average value of m(T) within that bin is 

Nj h(q) = m’ j = 1, 2, . . . , J, (15) 

where Tj = (j - 0.5)A and J is the total number of his- 
togram bins. This type of expectation density estimate 
finds application in neurobiological signal processing (e.g., 
see [ 1,2]) and is analogous to the time difference of arrival 
histogrum used extensively in radar signal analysis (e.g., 
see [3]). In Figure 1 we show estimates of m(r) with T > 0 
for regular point processes derived from an event arrival 
time sequence perturbed by NCJ and by CJ. In each case. 

N = 200 events, T = 100 ms, td = 50 ms, and 77‘ = 0 1 
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Figure 1: Histogram-based estimates of the expectation den- 
sity for a point process event arrival time sequence with NCJ 
(upper plot) and with CJ (lower plot). 

The shape of the peaks, in each histogram are in general 
agreement with the above observations for a NCJ and CJ pro- 
cess. Unlike the case for NCJ, the estimate, ti(rj), for a CJ 
process can clearly be seen to approach the limit T-’ = 10 
as defined by Equation (11). These distinctive properties of 
the expectation density provide visual cues as to the nature 
of the underlying jitter process and are particularly effective 
jitter discriminators for larger values of 7~. 

3.2. A Test for a Renewal Process 

It was noted in Section 2 that for a regular event-based 
process with NCJ, the IEIs are identically distributed as 
N(T, 2uz), but exhibit a statistical dependence by virtue 
of a common jitter variable. In contrast, the IEIs for a 
CJ process are i.i.d. as N(T, ui). This suggests that the 

discrimination between a NCJ and CJ process can be cast in 
terms of a test for a renewal process since a point process for 

which the IEIs, {Tn}, are i.i.d. is said to be of the renewal 
type. In the specific case of two Gaussian distributed random 
variables, a lack of correlation between the random variables 
implies statistical independence. We can make use of this 
property to test for the independence of the IEIs through an 
estimate of the serial correlation coeficient, pj . The serial 
correlation coefficient of lag j for a process with mean IEI 
T and variance u$ is defined by [6] 

p. = E {[z - TIE+j -TIIl 
J 4 (1’3) 

A set of serial correlation coefficients computed for a point 
process is often referred to as the serial correlogrum. Given 
a sequence of (N - 1) IEIs {Tn}$t, an asymptotically 

unbiased estimate of pj may be obtained from [6] 

with 

1 
N-J-I 

q = 
N-j-l c Tn (18) 

n=l 

1 
N-J-~ 

and j+!’ = 
I C T,+j. (19) 

N-j-1 n=l 

Ti and Ty are estimates of the mean IEI, T, calculated from 
the first and last (N - j - 1) observations of T, respectively. 
The sample serial correlogram has been used in neurobio- 
logical signal analysis, for instance, to investigate the serial 
dependence of the IEIs generated by a spiking neuron [ 1,2]. 

Computing the theoretical serial correlation coefficient 
for a lag of one for a regular event-based process with mean 

IEI T and NCJ, we obtain from (2) and (16) that 

Pl = 
E{[T+a,-cun-l-T][T+a,+l-cr,-T]} 

24 
I 

= 
E{a2} u2 -2 = -Q = -0.5. 

2ui 24 (20) 

One may also show that pj = 0 for j > 1. Similarly, for a 
CJ process, from (6) and (16) we have that 

Pl = 
E{[T+Pn -TI[T+Pn+l -2-J) 

6 
7 

(21) 

and pj = 0 for j > 1. In Figure 2 we plot the sample serial 
correlogram using ten lags for a regular event arrival time 
sequence with NCJ and with CJ. In each case, N = 200 
events, T = lOOms, t+ = 50ms and 7T = 0.1. The values 
for {bj}>fil are consistent with our previous ObSeNatiOnS. 

The above analysis also indicates that in the context of the 
jitter identification problem, a test for a renewal process 
should be limited to an estimate of pl. Such a test can be 
formulated using the following simple binary hypotheses: 

Ho : p1 = 0, 

H1 : p1 = -0.5. 

For large sample observations of a renewal process, bl (N - 
2)“.5 is distributed as N(0, 1) [6]. Therefore, given N 
jittered arrival times from a regular event-based process, the 

null hypothesis, Ho, is accepted or rejected based on 

j+ 7 Cv(N - 2)-“.5, (22) 
HO 
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Figure 2: The sample serial correlogram for a point process 
with NCJ (upper plot) and with CJ (lower plot). 

where C, is a negative-valued threshold derived from the 
statistics of the unit Gaussian and a specified significance 
level v. If Hc is accepted the jitter is classified as CJ, other- 
wise it is classified as NCJ. In Figure 3 we plot a histogram 

of the number of occurrences of $1 obtained separately for a 
regular arrival time sequence with NCJ and with CJ. A total 
of 500 independent realisations of each type of sequence was 
generated with parameters: N = 200 events, T = 100 ms, 
t0 = 50ms and 7~ = 0.1. The cluster of values centred 
on ii = 0 correspond to CJ events, while those centred on 
pi = -0.5 belong to NCJ events. The sample distributions 
are clearly well resolved for this value of N with no overlap 

and results in almost 100% correct jitter classification. 

4. ROBUSTNESS CONSIDERATIONS 

The results presented here relate to an event-based process 
that has been observed via some form of amplitude thresh- 
old detection scheme and under favourable conditions corre- 
sponding to a high signal-to-noiseratio (SNR). On occasion, 
however, the SNR might be low enough to prevent the reg- 
istration of every event and lead to the detection of false 
events. Under these circumstances the expectation density 

estimation approach has an advantage, in terms of a robust- 
ness to contamination by missing and false events, over the 
test for a renewal process. Indeed the renewal test approach 
fails with only a modest amount of contamination. It is 
possible, however, that the performance of the renewal test 
could be improved by pre-filtering an arrival time sequence 
and this investigation is on-going. Despite these limitations, 
the renewal test is very effective for a wide range of y~‘s, 
whereas the expectation density method was found to yield 
relatively poor discrimination results for small values of yT. 

Figure 3: Histogram of the distribution of pi obtained for a 
point process series of events with NCJ and with CJ. 

5. CONCLUSIONS 

System identification techniques were examined for discrim- 

inating between two types ofjitter model for an event-based 
process with a nominally regular IEI. The first method re- 
quired a visual inspection of an estimate of the expectation 
density for the corresponding point process and, as such, is 
suitable for off-line analysis. In contrast, the second method 
involved a numerical calculation of the serial correlation co- 
efficient for the observed process and is therefore amenable 
to on-line, automatic analysis of event-based data. 
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